ast summer, Denver
played host to the first
AES conference on
audio forensics, empha-
sizing the way that this
specialized field has adapted to the
digital age. In the September 2005
Journal (p. 838) we provided a detailed
report of the proceedings of that confer-
ence, and now in this article we review
in greater depth some of the work
presented there in the fields of voice
identification, spectrographic analysis,
and signal-enhancement techniques.
Defined at the conference by Rich
Saunders as “the study and examina-
tion of audio, recorded or otherwise, as
it pertains to finding a truth,” audio
forensics is strongly linked to the legal
profession. It has risen in importance
over the years as methods of validating
audio material have gained credibility
and as such material has increasingly
been regarded as admissible by courts.
Challenges facing the audio forensics
examiner include a wide range of iden-
tification tasks as well as the need to
validate the authenticity of recorded
materials and to determine whether
evidence has been modified or
tampered with. In the digital era, some
of the tools used by the examiner will
have changed and many of the formats
used for recording will bear little
resemblance to analog tape. Further-
more, there are problems to contend
with such as the effect of mobile phone
speech codecs and other forms of
modern communication.

VOICE IDENTIFICATION
The ability to identify the person who
is talking in an audio recording is a
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crucial part of many forensic examina-
tions. This can be a relatively straight-
forward task if the question is one of
determining which member of a
known group is speaking at any
instance, or much more complicated if
it requires identifying an unknown
speaker in a very large population. A
more common task is to determine
whether a voice sample taken from a
forensic recording purporting to con-
tain evidence is likely to be from the
same speaker as exemplar recordings
made of potential suspects. This
becomes a question of matching or
detection, with the conclusion reached
by the examiner having a certain prob-
ability of being accurate.

Tito and Begault describe a tech-
nique used in forensic voice identifica-
tion that uses aural-spectrographic
protocols. It relies on a trained exam-
iner’s ability to determine whether
known and unknown speech exemplars
were produced by the same speaker or
by two different speakers. The authors
explain that this method uses both
aural comparison and spectrographic
analysis to inform the decision. The
expert attempts to form an opinion
about the similarity between spectro-
grams using a form of gestalt pattern
matching rather than by specific quan-
tification of individual features.
Apparently, listening to the overall or
gestalt speech has been shown to be
more reliable than attending to indi-
vidual physical or psychophysical
measures of speech, probably because
it relies on the many cognitive
processes that humans have developed
over the years to assist them with
talker identification. Although there is

no scientific evidence indicating that
trained examiners do better than
laymen at discriminating voices, it
seems that, in general, aural voice
identification can be quite accurate. In
studies reported by the authors, false
identification of a voice is less com-
mon than missing a correct identifica-
tion, which is in line with the belief
that it’s better to lean toward not
convicting a guilty person rather than
taking a chance of convicting an inno-
cent one.

Bias in identifying voices is covered
by Tito and Begault at some length, as
they feel this topic is not sufficiently
appreciated. For example, they point
out that while a line-up of suspects is
often used for visual identification, it is
quite common to compare a voice
sample with only one suspect’s exem-
plar recordings. This is partly because
of the costs of undertaking more
comparisons, and also seems to have
something to do with increasing the
chance that an examiner will make a
false identification (regarded as a
potentially career-threatening situa-
tion). The authors argue that the human
costs of such corner-cutting are poten-
tially high and that it is ludicrous to
attribute infallibility to examiners.
Consequently they propose three differ-
ent types of line-ups that can be
employed: closed set, closed sequen-
tial, and open sequential. Each of these
has different degrees and types of
potential bias, the first type probably
being the least desirable because it
includes the a priori probability that the
guilty party is one of the known voices.
The latter two require the examiner to
make a judgment on each pair of w»
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Fig. 1. (A) Analog spectrographic representation of subject Heather reciting the words “then let.” (B) Digital spectrographic
representation of same phrase. (C) Analog representation of the diphthong in subject Shawn’s reciting of the word “bird.” (D)
Digital spectrographic representation of same word. (Courtesy Harper et al.)

known-unknowns in a sequence before
moving on to the next, and long-term
memory limitations make it more diffi-
cult to remember earlier exemplars
when listening to later ones. This
makes the chances of a false identifica-
tion less likely.

COMPARING ANALOG AND

DIGITAL SPECTROGRAPHS

Analog and digital spectrographs are
compared by Harper et al., in an
attempt to evaluate the potential for
loss or modification of spectrographic
data when using digital systems. They
cite the situation with digitized finger-
print photographs in this connection,
noting that in some cases serious dam-
age had been caused to their accuracy.
In order to make the comparisons
between analog and digital systems as
fair as possible the authors attempted to
make the settings of filters, ranges, win-
dows, and bandwidths as close as possi-
ble. When carrying out the comparison
between one pair of extant systems,
they evaluated four basic differences
between the appearances of spectro-
graphs: general change in definition,
change of shape, blurriness, and defini-
tion between transitions. They concen-
trated on four areas of speech represen-
tation: vowel formants, diphthong
formants, transitional areas, and conso-
nants. In a second comparison they
evaluated general change in definition,
pixelation, change of curvature, and
definition between transitions; these

58

being the dominant differences in the
second case. The comparisons in Fig. 1
show that the differences in representa-
tion can indeed be quite marked.

In order to gather quantitative data the
authors coded differences likely to result
in a mistake in identification of the voice
using the value 1. Total differences were
then counted over the different voice
features and voices used. Overall the
trend in the analysis showed slightly
more differences between analog and
digital spectrographs for female voices,
leading the authors to conclude that
although a more detailed study is neces-
sary to arrive at reliable answers, there
are enough differences between the
displays of spectrographs to warrant
careful further study.

CAN YOU TELL IF I HAVE A
BLOCKED NOSE?

Smith et al. were interested to find out
whether spectrographic analysis can
assist in discovering the effect of subtle
changes or alterations of a voice, and
whether factors such as a blocked nose,
or mimicking another person, can
affect the speaker’s “voiceprint.” Ten
males and ten females recorded four
phrases with a range of vowel and
diphthong sounds in three versions,
including a mimicked sample. The first
version involved the use of a natural
voice. The second two consisted of a
version with the speaker having a
pinched nose and one spoken in a
higher register. Spectrograms of the

different versions were visually ana-
lyzed, and linear-predictive-coding
analysis was undertaken to discover the
changes in mean formant frequencies in
each case.

Results of these experiments suggest
that those involved with voice identifica-
tion do not need to be extremely
concerned when a subject has a blocked
nose, as the main features of the spectro-
gram are maintained. Nonetheless,
some subtle changes in formant struc-
ture were observed as a result of
changes in the vocal resonators in the
head. Of greater concern is the observa-
tion that a skilled mimic can closely
imitate another person’s voice in terms
of formant frequency comparison. One
subject, for example, was able to match
the person she was imitating to within
+49 Hz in terms of the four vocal
formant frequencies.

POSSIBILITIES FOR AUTOMATIC
VOICE IDENTIFICATION

It is interesting to consider whether auto-
matic systems might be capable of dis-
tinguishing voices more accurately than
human examiners. In “Speaker Recogni-
tion Method Combining FFT, Wavelet
Functions, and Neural Networks,”
Grubesa et al. describe a system that
decomposes an averaged spectrum of a
speaker’s voice using wavelet functions,
after a subdivision of the spectrum into
22 subbands consistent with human
auditory filters (Bark bands). Approxi-
mations to the spectral function in each
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TABLE 1
COMPARISON OF TEST RESULTS FOR

DIFFERENT METHODS OF SPEAKER RECOGNITION

System 1/ % |System2/ % | System3/ %
Normally read text 75.0 87.8 94.6
o T Z 19
Ieanamscosicaly | s | s o2
E;rsnga:algd;e;d text with white 425 60 58.1
Total 47.5 52.5 65.8

subband are used as input data to a pre-
trained decision-making neural network,
and the decisions made for each band
are weighted and summed to make a
final decision.

In a first system developed by the
authors a neural network attempted to
make a decision based on the averaged
spectrum of the recorded voice of the
speaker. Unfortunately, this was highly
erroneous and could easily be deceived
by a speaker wishing to fool the system.
Furthermore, the system was intolerant
of distorted or noisy recordings.
Dividing the spectrum into Bark bands
helped in improving immunity to noise
and distortion, but otherwise the results
were still relatively poor and the system
showed some problems distinguishing
similar speakers such as brothers, or
fathers and sons. Improvements were
therefore sought and it was found that
immunity to noise and distortion could
be greatly helped if only a few charac-
teristic points were isolated from the
spectrum, but this reduced accuracy and
precision of identification so a compro-
mise was required. Static or averaged
spectral characteristics are of limited
value in voice analysis so the authors
looked at changes of those characteris-
tics over time, which are distinctive.

Testing the resulting versions of the
neural-network-based system, the
network first had to be trained for every
speaker included in the database. During
recognition, values for the test sample
were compared with coefficients from
the database and likely matches were
determined if the result was above some

threshold calculated for each speaker.
The probability that the decision is
correct could also be shown. The system
was tested using a number of different
versions of a spoken phrase, including
text read in an attempt to deceive the
system, text read in an acoustically
different environment, normally read
text with white noise added, and
normally read text with distortion
applied. The results in Table 1 show that
the final system performed well for the
normally read text, and also well for text
read in a different environment. It is a
good compromise for samples with
noise and distortion added, and it is
much better than the other two systems
at detecting people attempting to
deceive the system. It is not clear how
many voices were used in the training of
the network or in the test exercise.

DOES LOW BIT-RATE SPEECH
CODING CAUSE PROBLEMS?
Eddy Bggh Brixen and Durand
Begault investigated the validity of bit-
compressed digital voice recordings
for spectrographic analysis. This is
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because they were concerned about the
ways in which voice codecs, such as
those used in mobile phones and other
portable devices, might modify the
way in which the voice signal is recon-
structed. In a preliminary investigation
of this question they evaluated G.723-
encoded recordings at a maximum bit
rate of 6.3 kbit/s, as used in IC
recorders and surveillance equipment,
and the MSV LPEC-SP codec used in
the Sony Memory Stick format. LPEC
stands for long-term predicted excita-
tion coding. G723, designed as a dual-
rate speech codec for multimedia
applications, uses linear prediction
analysis-by-synthesis coding.

Voice exemplars—one in Danish-
accented English and the other in
American English—speaking the
phrase “forensic audio analysis” were
recorded by both Brixen and Begault.
Background noise was introduced in
some samples. In order to analyze the
samples, a package called STx from
the Acoustic Research Institute of the
Austrian Academy of Sciences in
Vienna, was employed. The authors
concluded that there were minor differ-
ences with the two compression
formats tested, but the formant shaping
and positions were very similar. The
fundamental pitch was unaffected, and
it was indicated that these two schemes
did not significantly change the key
features of the spectrograph in compar-
ison with the linearly coded reference,
leading to the suggestion that one can
reliably compare exemplars across the
schemes. An example is shown in Fig.
2, which shows that the main differ-
ence with the version subjected to low
bit-rate coding is a general increase in
noise-like artifacts across the spectrum.
Brixen and Begault, however, noted
that an aural comparison of these
schemes had not been conducted and
would be strongly influenced by the w»

THE WATERGATE TAPES
The most famous example of audio forensic analysis—and the legal and
political ramifications of such an analysis—is the Watergate tapes. In 1973
the U.S. Distric Court for Washington D.C. assigned six technical
experts—Richard Bolt, Franklin Coopeer, James Flanagan, Jay McKnight,
Tom Stockham, and Mark Weiss—the task of verifying the integrity and origi-
nality of audio tapes reccorded in the Nixon White House. Among these
tapes was one with an 18-minute gap, which the experts determined to be an
erasure “so strong as to make the recovery of the original conversation virtu-
ally impossible.” Jay McKnight, chair of the AES Historical Committee, has
posted a downloadable scan of the report, under the heading “Forensic Audio

Engineering,” at hitp/Awww aes org/aeshc.
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Fig. 2. Comparison of spectrographs of a linear PCM recording and a bit-rate-
reduced version of the phrase “forensic audio analysis” (courtesy Brixen and

Begault).

overall bandwidth differences

concerned.

IMPROVING FORENSIC
RECORDINGS USING
ADVANCED FILTERING

Audio enhancement using nonlinear
time-frequency filtering was described
by Robert Maher. He addressed situa-
tions in which forensic audio record-

ings contain undesired noise that can
impair source identification. In his
paper he states the need for a single-
ended noise-reduction approach that
can operate with no information other
than the noise-degraded audio signal
itself. This is not a new problem, but
one that is tackled in a novel way for a
particular forensic application. Maher
also explains that an approach is
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needed that can adapt to the short-term
signal behavior and enhance the signal
in such a way that an examiner will
find it better and more useful than the
unprocessed original. Starting off by
introducing the concept of spectral
subtraction, he shows how the noise
level as a function of frequency must
be estimated before subtracting it from
the received spectrum. Sometimes the
result of this process can be a residual
bird-like or tinkling noise when the
noise level varies or when the match
between the subtracted and actual
spectra is not correct. He makes the
valuable point that the quality and
effectiveness of the spectral subtrac-
tion technique is dependent on the
forensic task in hand. Different tasks
may give rise to a greater or lesser tol-
erance for noise and for different types
of residual distortion and side effect.
The technique proposed by Maher
attempts to distinguish between coher-
ent elements in the desired signal and
incoherent (noise-like) elements in the
unwanted signal. To achieve this he
looks for signal components in the
short-time Fourier transform (STFT)
that behave consistently over a short
time window. A two-dimensional
filter is used, having different time and
frequency resolutions, which can be
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Fig. 3. Noisy speech with segments identified (Figs. 3 and 4

courtesy Maher)
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Fig. 4. Representation of Maher’s 2-D filtering concept
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adapted to the signal characteris-
tics at any point in time. The
system identifies and treats in
different ways those sections of a
speech recording that are transi-
tions from voiced-to-silence,
voiced-to-unvoiced, unvoiced-to-
voiced, and silence-to-voiced. He
shows examples of spectra in
which likely areas of speech and
noise are identified (see Fig. 3).
Typical features of voiced speech
are sets of parallel tracks in the
spectrum, representing harmonics
of the voice spectrum. Con-
sequently, one filter is designed to
be narrow in frequency and broad
in time. Fricatives will generally
appear as patches of noise-like
information that are narrow in
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time but broad in frequency,
whereas unwanted noise tends to
appear as randomly located

Fig. 5. Screen shot of NoiseFree noise remover tool (Figs. 5 and 6 courtesy Musialik and
Hatje)

patches. Fricatives are very
important for speech intelligibility
and good voice identification, so
they must be correctly preserved.
In Maher’s system they are
preserved by using a filter that is
broad in frequency but narrow in
time, and by means of a pattern-
detection process that allows such
components to remain at bound-
aries between unvoiced and
voiced speech elements. An
example of Maher’s 2-D filtering
process is shown in Fig. 4.
Related approaches to noise
removal were also covered by
Musialik and Hatje. In their paper
they describe the use of frequency-
domain processors for this applica-
tion. In particular they deal with
two products known as NoiseFree
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and reNOVAtor, which are
designed to offer a number of flexi-
ble options to the professional sound-
restoration engineer or forensic
examiner. The user interface of
NoiseFree is shown in Fig. 5. The
processor enables the single-ended
removal of noise from a wanted signal.
The noise profile can be derived in one
of two ways: either by capturing it from
the input signal or by “tailoring” it from
flat white noise using a noise-profile
EQ interface. As shown in Fig. 6, the
user interface of reNOVAtor enables a
spectrogram to be zoomed and edited
graphically. Specific spectral compo-

nents or broad band clicks can be high-
lighted and removed, with the system
interpolating appropriate material to fill
the hole left behind. There are various
advanced features such as gain-selective
interpolation that limit signal-repair
operations to a certain gain range only,
so that as much of the original signal as
possible can be left intact. There is also
a means of automatically selecting
harmonics of the fundamental signal so
that complex tones can be effectively
removed, as well as tools for automati-
cally selecting clicks.
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Fig. 6. Screen shot of the reNOVAtor spectrographic editing tool

POSTSCRIPT

With this conference on audio
forensics in the digital age, the
Audio Engineering Society has
raised a number of interesting chal-
lenges to audio engineers as they
adapt to the use of digital tools and
analysis methods for tasks tradition-
ally undertaken in the analog
domain. For those wishing to study
the topic in more detail, the full set
of papers from this conference is
available at http://www.aes.org/

blicati =

61


http://www.aes.org/publications/conf.cfm
http://www.aes.org/publications/conf.cfm

	056.p1.pdf
	056.p2.pdf
	056.p3.pdf
	056.p4.pdf
	056.p5.pdf

