
AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2024/04/17 16:22 DRAFT REVISED AES70-1-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

STANDARDS AND

INFORMATION DOCUMENTS

Call for comment on DRAFT
AES standard for

Audio applications of networks -
Open Control Architecture -

Part 1: Framework

This document was developed by a writing group of the Audio Engineering Society Standards Committee
(AESSC) and has been prepared for comment according to AES policies and procedures. It has been brought to
the attention of International Electrotechnical Commission Technical Committee 100. Existing international
standards relating to the subject of this document were used and referenced throughout its development.

Address comments by E-mail to standards@aes.org, or by mail to the AESSC Secretariat, Audio Engineering
Society, 697 Third Ave., Suite 405, New York NY 10017. Only comments so addressed will be considered.
E-mail is preferred. Comments that suggest changes must include proposed wording. Comments shall be
restricted to this document only. Send comments to other documents separately. Recipients of this document are
invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to
provide supporting documentation.

This document will be approved by the AES after any adverse comment received within six weeks of the
publication of this call on http://www.aes.org/standards/comments/, 2024-04-18, has been resolved. Any person
receiving this call first through the JAES distribution may inform the Secretariat immediately of an intention to
comment within a month of this distribution.

Because this document is a draft and is subject to change, no portion of it shall be quoted in any
publication without the written permission of the AES, and all published references to it must include a
prominent warning that the draft will be changed and must not be used as a standard.

AES STANDARDS: DRAFT FOR COMMENT ONLY

Secretariat 2024/04/17 16:22 DRAFT REVISED AES70-1-xxxx

AES STANDARDS: DRAFT FOR COMMENT ONLY

Notes

AES70-1-2024-CFC

 AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

DRAFT
AES standard for audio applications of networks

- Open Control Architecture -
Part 1: Framework

Published by
Audio Engineering Society, Inc.
Copyright © 2015, 2018, 2023, 2024 by the Audio Engineering Society

Abstract

AES70 is a suite of standards for control and monitoring of devices in professional media networks. This
standard, AES standard for Audio applications of networks - Open control architecture - Part 1: Framework
defines AES70's concepts and mechanisms. Other standards in the AES70 suite specify control and
monitoring repertoire, control protocols, and media transport management applications.

AES70 does not specify a media transport scheme. Rather, it is designed to operate with media transport
schemes such as the one specified by AES67.

AES70's intended range of use spans networks of all sizes. This includes mission-critical applications,
high-security applications, IP and non-IP networks, and local and wide-area applications. AES70 can
control real or virtual devices located on premises or hosted by cloud services. AES70 consumes little
computing power and uses network bandwidth lightly.

AES70 architecture is network-agnostic. Current AES70 standards define protocols for use over IP
networks and simple byte-stream networks, but other network types may readily be accommodated.

AES70 is based on the Open Control Architecture (OCA), originally developed by the OCA Alliance.

Audio Engineering Society Inc., 697 Third Avenue, Suite 405, New York, NY 10017, US.

www.aes.org/standards standards@aes.org

 - 2 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Foreword

This foreword is not part of this document, AES standard for Audio applications of networks - Open Control
Architecture - Part 1: Framework.

The role of AES standards. An AES standard implies a consensus of those directly and materially
affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer,
and the general public. Prior to the publication of an AES standard, all parties, including the general
public, are given opportunities to comment or object to any provision. Nevertheless, the existence of an
AES standard shall not preclude anyone, whether or not he or she has approved the document, from
manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement
with the standard.

Patent rights. Attention is drawn to the possibility that some of the elements of this AES standard or
information document may be the subject of patent rights. AES shall not be held responsible for
identifying any or all such rights. Approval by the AES does not assume any liability to any patent
owner, nor does it assume any obligation whatever to parties adopting the document.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Review and revision. This document is subject to periodic review and possible revision. Users are
cautioned to obtain the latest edition.

AES70 Structure

The AES70 standard is a suite of standards, classified into two divisions. The Core Standards division,
contains standards essential to all implementations of AES70; the Adaptation Standards division contains
application-specific standards. This standard, AES standard for Audio applications of networks - Open
Control Architecture - Part 1: Framework, is a Core Standard.

AES70-1 Version history

Original standard (AES70-1-2015). The members of the writing group that developed this document in
draft were: J. Berryman, K. Dalbjorn, H. Hamamatsu, T. Head, T. Holton, S. Jones, M. Lave, N. O'Neill,
M. Renz, P. Stevens, S. van Tienen, E. Wetzell, and U. Zanghieri. Additional contributions were made by
M. Smaak, and G. van Beuningen of the OCA Alliance.

2018 revision. The members of the writing group that developed this document in draft were: F.
Bergholtz, J. Berryman, K. Dalbjorn, A. Gödeke, J. Grant, T. Holton, S. Jones, A. Kuzub, M. Lave, G. Linis,
S. Price, M. Renz, A. Rosen, G. Shay, P. Stevens, P. Treleaven, S. van Tienen, E. Wetzell, and U. Zanghieri.
Additional contributions were made by T. de Brouwer and M. Smaak of the OCA Alliance.

2023 revision. The standards in this revision are collectively known as AES70-2023. For AES70-2023, all
standards in the suite have been updated. New features in the Core Specification include: a new
connection management architecture, large dataset storage and retrieval, documentation improvements,
and numerous small additions and enhancements. More details can be found in Annex G.

The members of the writing group that developed this document in draft were: J. Berryman, B. Escalona
Espinosa, A. Gödeke, E. Hoehn, S. Jones, M. Lave, G. Linis, M. Renz, A. Rosen, S. Scott, P. Stevens, P.
Treleaven, S. van Tienen, M. Versteeg, and E. Wetzell.

 - 3 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

2024 revision. The AES70-2024 suite comprises new releases of AES70-1, AES70-2, and AES70-3. It
contains a number of adjustments, corrections, and enhancements to the AES70-2023 version. New
AES70 elements specified in this AES70-1 Standard include a new class OcaGroup that replaces the
previous OcaGrouper, a revised and simplified version of OcaMatrix, and a new class
OcaCommandSetAgent.

The members of the writing group that developed this document in draft were: J. Berryman, B. Escalona
Espinosa, A. Gödeke, E. Hoehn, S. Jones, M. Lave, G. Linis, M. Renz, A. Rosen, S. Scott, P. Stevens, P.
Treleaven, S. van Tienen, M. Versteeg, and E. Wetzell.

J. Berryman led the task group for all four revisions.

Morten Lave
Chair, AES SC-02-12, Working Group on Audio Applications of Networks
2024-04-12

Note on normative language

In AES standards documents, sentences containing the word "shall" are requirements for compliance with
the document. Sentences containing the verb "should" are strong suggestions (recommendations).
Sentences giving permission use the verb "may". Sentences expressing a possibility use the verb "can".

 - 4 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Contents

0. Introduction ... 11
0.1. General ... 11
0.2. Architectural goals and constraints ... 11
1. Scope .. 13
2. Normative References .. 13
3. Terms, definitions, and abbreviations .. 15
4. Document conventions .. 20
5. AES70 Compliance .. 21
6. Top-level design .. 21
6.1. General ... 21
6.2. Object orientation ... 22
6.2.1. General .. 22
6.2.2. Classes ... 22
6.2.3. Instantiation of classes .. 29
6.3. Messages .. 29
6.3.1. Basic mechanism ... 29
6.4. Control sessions .. 29
6.4.1. Control Session Transport .. 30
7. AES70 Adaptations ... 30
7.1. Adaptation Identifiers.. 30
8. Device Model ... 30
8.1. Object addressing ... 30
8.2. Standard Object Numbers (ONo) ... 31
8.3. Text identification of Control Objects .. 32
8.3.1. Role .. 32
8.3.2. Label .. 32
8.4. Device Model elements .. 33
8.4.1. General .. 33
8.4.2. Object categories .. 33
8.5. Worker classes .. 34
8.5.1. Actuators .. 34
8.5.2. Sensors .. 35
8.5.3. Blocks .. 35
8.5.4. Matrices .. 35
8.5.5. Dataset workers ... 35
8.6. Agent classes ... 35
8.6.1. General .. 35
8.6.2. OcaGroup .. 35
8.6.3. OcaRamper .. 35
8.6.4. OcaNumericObserver and OcaNumericObserverList ... 36
8.6.5. OcaPowerSupply .. 36
8.6.6. OcaTaskAgent ... 36
8.6.7. OcaTaskScheduler ... 36
8.6.8. OcaMediaClock3 .. 36
8.6.9. OcaTimeSource .. 36

 - 5 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.6.10. OcaPhysicalPosition ... 37
8.6.11. OcaCounterNotifier.. 37
8.6.12. OcaMediaTransportSessionAgent .. 37
8.6.13. OcaBlockFactoryAgent ... 37
8.6.14. OcaCommandSetAgent ... 37
8.7. Network classes .. 37
8.8. Dataset classes ... 37
8.9. Manager classes .. 37
9. Events and subscriptions ... 38
9.1. Versions of the event and subscription mechanism (Informative) .. 38
9.2. Subscriptions, events, emitters, and notifications .. 38
9.2.1. General .. 38
9.2.2. Notification Delivery Mode ... 38
9.2.3. Subscription deletion .. 39
9.2.4. Notifications ... 39
9.2.5. Limits .. 39
9.3. Subscription aggregation... 39
9.4. The PropertyChanged event ... 40
9.5. Numeric Value Observers ... 41
10. Blocks .. 41
10.1. Basic mechanism ... 41
10.2. Block Member enumeration .. 42
10.3. Block modification .. 42
10.4. Blocks and object addressing .. 42
10.5. Block searching ... 42
10.5.1. Action Object searches .. 42
10.5.2. Dataset Object searches .. 43
10.6. Blocks and Control Aggregation .. 43
10.7. Signal flow control ... 43
10.7.1. Ports .. 43
10.7.2. Clock maps ... 43
10.7.3. Block ports .. 44
10.7.4. Signal paths .. 44
10.7.5. Signal flow of a Block.. 44
10.8. Examples .. 45
11. Constructing and deleting objects ... 45
11.1. General ... 45
11.2. Block Configurability ... 46
11.3. Block Factories .. 47
11.3.1. Concept (Informative) .. 47
11.3.2. General .. 47
11.3.3. Prototypes .. 47
11.3.4. Prototype Object Numbers .. 47
11.4. Reusable Blocks .. 48
11.4.1. General .. 48
11.4.2. Block type identifier .. 48
11.4.3. Instantiation of reusable Blocks ... 48
12. Matrices ... 48

 - 6 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

12.1. General ... 48
12.2. Matrix structure .. 48
12.2.1. Sparseness .. 49
12.3. Matrix addressing... 49
12.4. Complex members ... 49
12.5. Accessing Members .. 50
12.5.1. Execute methods (Informative) .. 50
12.5.2. Direct access ... 51
12.5.3. Concurrent changes to Matrices (Informative) ... 51
12.6. Matrix signal flow .. 51
12.7. Application notes (Informative) ... 52
12.7.1. Non-mixing applications .. 52
12.7.2. Non-summing output signal combining.. 52
13. Control Aggregation ... 53
13.1. Basic mechanism ... 53
13.2. Group operating modes .. 53
13.2.1. Hierarchical mode ... 53
13.2.2. Peer-to-Peer mode ... 53
13.3. Aggregation and Saturation Rules ... 54
13.4. Adding and removing Members .. 54
13.5. Overlapping group membership (Informative) ... 54
13.6. Concurrent changes to Groups (Informative) .. 54
14. Networking model .. 54
14.1. General (Informative) .. 54
14.2. Architectural layers .. 55
14.3. NAC stacks .. 55
14.4. NAC Control Classes ... 57
14.4.1. The property OcaNetworkApplication.Assignments ... 58
14.4.2. The property OcaNetworkInterface.SystemIoInterfaceName .. 58
14.5. Service Advertising .. 59
14.6. OcaNetworkManager collections .. 59
15. IP network interface Adaptation .. 59
15.0. General ... 59
15.1. Structure .. 60
15.2. Examples .. 60
16. Media transport application model ... 60
16.1. General ... 60
16.1.1. Older mechanisms (Informative) .. 60
16.2. CM4 classes ... 61
16.3. Ports .. 62
16.3.1. Port clocking and sampling rate conversion ... 62
16.4. Media Stream Endpoint control mechanism .. 63
16.4.1. General .. 63
16.4.2. Media Stream Endpoints .. 63
16.5. The Media Transport Session Management mechanism .. 65
17. Time ... 65
17.1. Physical time ... 65
17.1.1. AES70 Epoch .. 65

 - 7 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

17.1.2. Format ... 66
17.1.3. UTC time and the NTP time format ... 66
17.2. Time references ... 66
17.3. Media position .. 66
17.4. OcaWhen... 66
18. Physical position coordinate systems .. 67
18.1. Robotic coordinates .. 67
18.2. ITU coordinates .. 68
18.2.1. ITU object-based polar coordinates .. 68
18.2.2. ITU object-based Cartesian coordinates ... 68
18.2.3. ITU scene-based polar coordinates ... 68
18.2.4. ITU scene-based Cartesian coordinates.. 69
18.3. Navigation coordinates ... 69
19. Datasets - general .. 69
19.1. Dataset applications defined by AES70 ... 69
19.2. Dataset name ... 70
19.3. Dataset type ... 70
19.4. Class OcaDataset ... 71
19.5. OcaBlock features for Datasets .. 71
19.6. Dataset access concurrency management ... 71
19.7. Dataset creation (Informative) .. 71
19.8. User-defined Dataset types ... 72
20. Logging Datasets ... 72
20.1. Concept .. 72
20.2. Log Retrieval ... 72
21. Stored parameter value Datasets .. 73
21.1. ParamDatasets .. 73
21.1.1. Assignments ... 74
21.2. PatchDatasets .. 74
22. Media Volume Datasets ... 74
22.1. Class OcaMediaRecorderPlayer ... 75
23. Task feature set .. 75
23.1. General ... 75
23.2. Program Datasets ... 76
23.3. Commandset Datasets ... 76
23.4. Task Agent ... 76
23.4.1. Run mode ... 77
23.5. Task scheduler .. 77
24. Counters and Countersets ... 78
24.1. Identification ... 78
24.2. Relationships of counters to notifiers .. 79
24.3. Class design pattern ... 79
25. Security ... 79
26. Concurrency control ... 79
26.1. OcaLockManager.. 80
27. Reliability ... 80
27.1. Availability .. 81

 - 8 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

27.1.1. Device availability monitoring .. 81
27.1.2. Efficient reinitialization .. 81
27.2. Robustness ... 81
28. Device Reset ... 81
29. Firmware and software upgrade... 82
29.1. Update Types .. 82
29.2. Update Modes ... 83
29.3. Mechanisms ... 83
29.3.1. Active Updating .. 83
29.3.2. Passive Updating ... 84
Annex A. (Informative) Actuator example .. 85
A.1. General ... 85
Annex B. (Informative) Block examples .. 88
B.1. Simple microphone channel .. 88
B.2. Two-channel microphone mixer .. 88
B.3. Mixer using nested Blocks ... 88
Annex C. (Informative) Networking examples .. 90
C.1. Elaborate CM4 example ... 90
C.2. Typical NAC Control Applications for IP networks ... 91
C.2.1. Case I - no Service Advertising ... 91
C.2.2. Case II - with Service Advertising .. 91
Annex D. (Informative) Networking feature set versions .. 94
Annex E. (Informative) OcaGroup implementation considerations .. 95
E.1. General ... 95
E.2. Aggregation rules ... 95
E.3. Saturation rules ... 95
Annex F. (Informative) MIME media type ... 96
Annex G. (Informative) New features in the AES70-2023 Core Specification .. 97
Annex H. (Informative) Deprecated mechanisms .. 98
H.1. AES70 Libraries .. 98
H.2. OcaTaskManager-based task feature set .. 98
H.3. Event mechanism version EV1 ... 98
H.4. Networking classes and the CM3 connection management mechanism.. 98
Annex I. Bibliography.. 99

 - 9 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Tables

Table 1. Class index value rules .. 25
Table 2. Class identification datatypes ... 26
Table 3. Manager classes and standard Object Numbers .. 31
Table 4. Kinds of workers .. 34
Table 5. Deprecated Manager classes ... 37
Table 6. Block configuration management methods .. 46
Table 7. OcaNetworkInterface property values for IP .. 60
Table 8. CM4 classes by mechanism ... 62
Table 9. Physical Position Coordinate Systems .. 67
Table 10. Position coordinate system attributes. .. 67
Table 11. Dataset applications defined by AES70 .. 70
Table 12. Standard AES70 Dataset types ... 70
Table 13. Counter Datatypes and Agents .. 78
Table 14. OcaGain properties... 85
Table 15. OcaGain methods .. 86
Table 16. OcaGain event ... 86

Figures

Figure 1. Standard and Nonstandard ClassIDs .. 26
Figure 2. Device model ... 33
Figure 3. Using a Numeric Observer to implement a signal-present light 41
Figure 4. Signal Flow .. 45
Figure 5. AES70 matrices ... 49
Figure 6. Matrix Member that is a Block .. 49
Figure 7. Matrix of Blocks .. 50
Figure 8. Matrix Port relationships ... 52
Figure 9. NAC stack model .. 56
Figure 10. Example of NAC Stacks in an AES67 Media Device ... 56
Figure 11. NAC classes ... 57
Figure 12. OcaNetworkInterfaceAssignment and OcaNetworkAdvertisement 58
Figure 13. CM4 classes and key datatypes .. 61
Figure 14. Task Feature Set classes ... 75
Figure 15. Counterset, Counter(s), and Notifier(s) ... 78
Figure 16. OcaGain lineage ... 85
Figure 17. Simple microphone channel Signal Flow .. 88
Figure 18. Two-channel microphone mixer .. 88
Figure 19. Mic channel with EQ sections inline .. 89
Figure 20. Microphone channel with MicEqualizer Block .. 89
Figure 21. Example: CM4 multi-network configuration ... 90
Figure 22. NAC Stack for simple IPv4 Network Application with no Service Advertising 92
Figure 23. NAC Stack for simple IPv4 Network Application with Service Advertising 93

 - 10 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTES

 - 11 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

DRAFT
AES standard for Audio applications of networks

- Open control architecture -
Part 1: Framework

0. Introduction

0.1. General

This document defines the AES70 Framework, which is a set of models and mechanisms for the control
and monitoring of networked Devices. AES70 focuses on the control of Media Devices. The technology
forming AES70 is known as the Open Control Architecture.

AES70 is for system control and monitoring only, and may be integrated with any streaming media
transport protocol scheme, as long as the underlying communication network is capable of carrying
AES70 control and monitoring traffic.

AES70 does not provide a complete device implementation model. AES70 models the control and
monitoring functions of a Device, not its entire signal path. If a particular Device element has no remotely
controllable features, then that element need not be represented in the device's AES70 protocol interface.

0.2. Architectural goals and constraints

AES70 is based upon the following features and requirements:

Functionality

AES70 supports the following functions:

1. Discover the Devices that are connected to the network.
2. Define Media Stream paths between Devices.
3. Control operating and configuration parameters of a Device.
4. Monitor operating and configuration parameters of a Device.
5. For Devices with reconfigurable signal processing and/or control capabilities, define and manage

configuration parameters.
6. Upgrade software and firmware of controlled Devices. Include features for fail-safe upgrades.

Security

AES70 uses industry-standard security technology to provide the following security measures for
control and monitoring data:

1. Entity authentication
2. Prevention of eavesdropping
3. Integrity protection
4. Freshness (see definition 30)

Scalability

AES70 supports networks with up to at least 10,000 Devices. AES70 imposes minimal restriction on
the physical distribution of Devices.

 - 12 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Availability

AES70 supports high availability by offering:

1. Active monitoring of Device availability.
2. Supervision of network connections to Devices.
3. Efficient network re-initialization following errors and configuration changes.

Robustness

AES70 supports robustness by offering:

1. A mechanism for operation confirmation.
2. A mechanism for handling loss of control data.
3. A mechanism for handling failure of Devices.
4. Recommendations on network robustness mechanisms that network implementers may use.

Safety compliance

AES70 allows implementations of media networks that conform to life-safety emergency standards.

Compatibility

As AES70 evolves, it will maximize compatibility among its different versions. A Controller based on
one version of AES70 operates with a Device based on another version of AES70 in the following
manner:

1. For a Device based on an older version of AES70, the Controller which is based on a newer
version will function as if it were based on the same version of AES70 as the Device.

2. For a Device based on a newer version of AES70, the Controller which is based on an older
version will be able to control and monitor all the functions of the Device defined in the
Controller's version of AES70, and will not interfere with functions defined only in the Device's
version of AES70.

Diagnostic support

AES70 defines diagnostic functions that allow access to the following information:

1. Version information of all components, hardware and software, of each Device
2. Network parameters of a Device - for example, MAC address, IP address
3. Device status (including status of devices' network interfaces)
4. Media stream parameters (for each active receive and/or transmit Media Stream of a Device)

 - 13 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

1. Scope

AES70 defines a scalable control-protocol architecture for the control and monitoring of professional
media networks. AES70 addresses device control and monitoring only; it does not define standards for
transporting streaming media or for describing media content.

This Part 1 describes the models and mechanisms of the AES70 Open Control Architecture. These models
and mechanisms together form the AES70 Framework. This document should be read in conjunction with
AES70-2: Class structure, and AES70-3: OCP.1 Binary Protocol.

AES70 architecture is network-agnostic. AES70-3 defines a protocol for use over IP networks and simple
byte-stream networks, but other network types may readily be accommodated.

2. Normative References

The following referenced documents are indispensable for the application of AES70 standards. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

This clause is a consolidated list that includes references cited in all documents in the AES70 Core
Specification (definition 24), not just this document [AES70-1].

AES11. AES11-2020: AES recommended practice for digital audio engineering - Synchronization of digital audio
equipment in studio operations. Audio Engineering Society, New York, NY., US.

AES17. AES17-2020. AES standard method for digital audio engineering - Measurement of digital audio
equipment. Audio Engineering Society, New York, NY., US.

AES70-1 AES standard for audio applications of networks - Open Control Architecture - Part 1: Framework.
Audio Engineering Society, New York, NY., US. This document.

AES70-2. AES standard for audio applications of Networks - Open Control Architecture - Part 2: Class structure.
Audio Engineering Society, New York, NY., US. Reference denotes the 2023 version of the standard,
unless otherwise noted.

AES70-3. AES standard for audio applications of networks - Open Control Architecture - Part 3: OCP.1: Binary
protocol. Audio Engineering Society, New York, NY., US. Reference denotes the 2023 version of the
standard, unless otherwise noted.

AES70-1A, -1B, -1C, etc. Annex A, B, C, etc. respectively of [AES70-1].

AES70-2A, -2B, -2C, etc. Annex A, B, C, etc. respectively of [AES70-2].

AES70-3A, -3B, -3C, etc. Annex A, B, C, etc. respectively of [AES70-3].

IANA-01. Media Types. The complete list of registered MIME media types. At
https://www.iana.org/assignments/media-types/media-types.xhtml.

IEEE-754. 754-2008 - IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers (IEEE), 2008. https://ieeexplore.ieee.org/document/4610935/

IEEE-1588. IEEE-1588-2019 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, Institute of Electrical and Electronic Engineers (IEEE), Piscataway, New
Jersey, US.

 - 14 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

IEC-61883-6. IEC 61883-6:2014: Consumer audio/video equipment - Digital interface - Part 6: Audio and music
data transmission protocol. International Electrotechnical Commission, Geneva, Switzerland.

ISO-9787. ISO 9787:2013 - Robots and robotic devices -- Coordinate systems and motion nomenclatures.
International Standards Organization (ISO), Geneva, Switzerland.

ISO/IEC-10646. ISO/IEC 100646:2020 Information technology - Universal Multiple-Octet Coded Character Set
(UCS). International Standards Organization (ISO), Geneva, Switzerland.

ISO/IEC 19503. Information technology – XML Metadata Interchange (XMI), Ed.1:2005. International
Standards Organization (ISO), Geneva, Switzerland.

ITU-R-BS.2076-2. Recommendation ITU-R BS.2076-2 (10/2019): Audio Definition Model. International
Telecommunications Union, Geneva, Switzerland.

RFC 2045. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. IETF.

RFC 2586. The Audio/L16 MIME content type. IETF.

RFC 3190. RTP Payload Format for 12-bit DAT Audio and 20- and 24-bit Linear Sampled Audio. IETF

RFC 3550. RTP: A Transport Protocol for Real-Time Applications. IETF.

RFC 3927. Dynamic Configuration of IPv4 Link-Local Addresses. Internet Engineering Task Force (IETF),
2005.

RFC 4122. A Universally Unique Identifier (UUID) URN Namespace. Internet Engineering Task Force
(IETF), 2005.

RFC 4279. Pre-Shared Key Ciphersuites for Transport Layer Security (TLS). Internet Engineering Task Force
(IETF), 2005.

RFC 4291. IP Version 6 Addressing Architecture. IETF, 2006.

RFC 4856. Media Type Registration of Payload Formats in the RTP Profile for Audio and Video Conferences.
IETF.

RFC 4862. IPv6 Stateless Address Autoconfiguration. Internet Engineering Task Force (IETF), 2007.

RFC 5246. The Transport Layer Security (TLS) Protocol, Version 1.2. Internet Engineering Task Force (IETF),
2008.

RFC 5424. The Syslog Protocol. IETF.

RFC 5905 Network Time Protocol Version 4: Protocol and Algorithms Specification. IETF.

RFC 6335. Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name
and Transport Protocol Port Number Registry. Internet Engineering Task Force (IETF), 2011

RFC 6762. Multicast DNS. IETF.

RFC 6763. DNS-Based Service Discovery. IETF.

RFC 7231. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. Internet Engineering Task Force
(IETF), 2014

 - 15 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

RFC 7235. Hypertext Transfer Protocol (HTTP/1.1): Authentication. Internet Engineering Task Force (IETF),
2014

RFC 7273. RTP Clock Source Signaling. IETF.

RFC 8259. The JavaScript Object Notation (JSON) Data Interchange Format. IETF.

RFC 8866. SDP: Session Description Protocol. IETF.

SMPTE-2059-1. Generation and Alignment of Interface Signals to the SMPTE Epoch. Society of Motion Picture
and Television Engineers, White Plains, NY, US.

UML. OMG Unified Modeling Language (OMG UML), version 2.5.1. Object Management Group, 2017
December.

UNICODE. Unicode® 14.0.0. The Unicode Consortium, 2021 September 14.

WGS-84. US Department of Defense World Geodetic System 1984. Third edition, NIMA TR8350.2.
National Imagery and Mapping Agency, Washington, DC, 2000 January 3.
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

3. Terms, definitions, and abbreviations

For the purposes of this document, the following terms and definitions apply.

1. Action Object
object that is one of:
 Worker (definition 74);
 Agent (definition 4);
 Network Interface (definition 52);
 Network Application (definition 48);
not one of:
 Dataset Object (definition 26)
 Manager (definition 37).

2. Adaptation
formal specification of a set of augmentations and/or constraints applied to AES70 for a particular use.

3. AES70 Interface
network-accessible control interface defined in compliance with this standard.

4. Agent
object of class OcaAgent or of a subclass of OcaAgent.

5. Aggregation Rule
in Groupers (Clause 13): algorithm by which Citizen property values are computed.

6. Alignment Level
defined anchor point that represents a reasonable or typical signal level. See [Wiki-001].

7. Availability
proportion of time a Device is in a functioning condition.

 - 16 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8. Binary Large Object, BLOB
contiguous block of binary data whose structure is outside the scope of this standard.

9. Block, Block Object
object; instance of class OcaBlock or of a subclass of OcaBlock. See Clause 9.

10. Block Factory
an Agent that constructs Blocks.

11. Block Member
object that is either an Action Object (definition 1) or a Dataset Object (definition 26).

12. Citizen
object controlled by a Grouper. See Clause 13.

13. Configurability
whether a feature is static (definition 71) or dynamic (definition 29).

14. Connection Management
historical term introduced in earlier versions of this standard to represent the entire functionality directly
responsible for media networking. Presently its scope includes Endpoint Control and Session Management.

15. Contain, Containment; Collect, Collection
Contain, Containment: incorporation of objects within other objects. See Clause 6.2.3.1.
Collect, Collection: incorporation of references to objects within other objects. See Clause 6.2.3.2.

16. Control Aggregation
mechanism by which the changing of one control parameter affects corresponding changes in a related
group of parameters; called in other texts "control grouping", "control mastering", "control ganging",
"control linking", or similar.

17. Control Class
class whose definition is part of the AES70 Control Model.

18. Control Datatype
datatype whose definition is part of the AES70 Control Model

19. Control Model, AES70 Control Model
the classes, datatypes, and related mechanisms defined in this Standard that can be used to construct an
AES70 Interface.

20. Control Object
instance of a Control Class

21. Control Protocol
application protocol whose purpose is control and monitoring of Devices.

22. Control Session
Session (definition 69) that provides a control relationship between a Controller and a Device.

 - 17 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

23. Controller
network-connected software element whose function is to control and/or monitor Devices via an AES70
Interface. A Controller may be hosted in a dedicated computer, or may be a software element running in
a Device or in some other environment.

24. Core Specification
members of the AES70 standards family that define the fundamentals of AES70: AES70-1, AES70-2,
AES70-3, and possible future standards. By convention, Core standards have identifiers with numeric
suffixes less than 20.

25. Dataset
unit of data stored in a Device.

26. Dataset Object
object, instantiated from class OcaDataset or a subclass of OcaDataset, that is the control interface for a
Dataset.

27. Device
network-connectable hardware or software product that exposes an AES70 Interface.

28. Device Model
Device control scheme based on the AES70 Control Model.

29. Dynamic
as applied to Blocks: able to be created, changed, or deleted while the Device is Online. Opposite of Static
(definition 71).

30. Endpoint Control
as applied to Media Devices: setting up, monitoring, updating, and tearing down of Media Stream
Connections.

31. Executable
programmatic action or command sequence that may be run in a Device. See Clause 23.1.

32. Freshness
in the communications security context, the certainty that replayed messages in a Replay Attack will be
detected as such. (Replay Attack see [Wiki-003].)

33. Group
object of class OcaGroup (Clause 13).

34. IANA
Internet Assigned Numbers Authority, the standards organization that oversees the allocation of Internet-
related addresses, symbols, and numbers.

35. IETF
Internet Engineering Task Force, the standards organization for the Internet.

36. JSON
short for Javascript Object Notation, a scheme for rendering object-oriented data into text strings,
standardized in [RFC 8259].

 - 18 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

37. Manager
object of class OcaManager.

38. Media Device
Device that originates and/or accepts Media Streams.

39. Media Signal
set of media samples or frames, ordered in time.

40. Media Stream
flow of digital data that carries one or multiple Media Signals over a network connection.

41. Media Stream Connection
association of two Media Stream Endpoints between which a Media Stream is flowing.

42. Media Stream Endpoint
terminus of a Media Stream inside a Media Device.

43. Media Stream Input Endpoint
Media Stream Endpoint that represents the destination of a Media Stream.

44. Media Stream Output Endpoint
Media Stream Endpoint that represents the origin of a Media Stream.

45. Media Transport Session
Media Stream Connection or Collection of Media Stream Connections assembled together, serving a
specific purpose.

46. Media Transport Session Management
process of setting up, controlling, monitoring, and tearing down Media Transport Sessions.

47. Media Volume
Dataset that contains media stream data

48. Network Advertisement
identification of an interface for accessing a particular Device function, published in a network directory
or other information repository.

49. Network Application
object that is an instance of class OcaNetworkApplication or of a subclass of OcaNetworkApplication.

50. Network Application Control (NAC)
AES70's abstract model for control and monitoring of Network Interfaces and Network Applications.

51. NAC Stack
complete set of NAC networking objects and their linkages for a given Network Application.

52. Network Interface
object that is an instance of class OcaNetworkInterface or of a subclass of OcaNetworkInterface.

53. Network Interface Assignment
in Network Application Control (Clause 14.3), a link between a Network Interface and a Network
Application.

 - 19 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

54. Non-media Device
Device that does not originate or accept Media Streams.

55. Object Number, ONo
arbitrary 32-bit integer used to identify an AES70 Object. Object Numbers are unique within each given
Device.

56. OCP.1
Open Control Protocol based on binary encoding of Protocol Data Units. Standardized in [AES70-3].

57. Online
connected to network and ready to receive commands from Controllers.

58. Open Control Architecture, OCA
control and monitoring architecture for media networks. Its models and mechanisms together form the
AES70 Framework.

59. Open Control Protocol, OCP
network protocol that implements interaction between Controllers and Devices, defined in accordance
with the AES70 specification

60. ParamDataset
Dataset that stores property values for a Block. See Clause 9.

61. ParamDataset Assignment
instruction that defines the application of a specific ParamDataset to a specific block. See Clause 21.1.1.

62. PatchDataset
set of Assignments. See Clauses 21.1.1 and 21.2.

63. PTP, Precision Time Protocol
time distribution protocol defined by [IEEE-1588].

64. Protocol data unit, PDU
in layered systems: unit of data that is specified in a protocol of a given layer and contains data relevant
to the operation of that layer.

65. PTP, Precision Time Protocol
time distribution protocol defined by [IEEE-1588].

66. Robustness
ability of a Device to cope with errors during operation despite abnormalities in signal, control input,
network operation, or operating environment.

67. Run Time
any time when a Device is Online.

68. Saturation rule
in Groupers (Clause 13): rule that determines how out-of-range conditions are handled.

69. Session
end-to-end communications relationship serving a specific purpose.

 - 20 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

70. Session Management
process of creating, controlling, monitoring, and deleting Sessions.

71. Static
as applied to Blocks: not able to be created, changed, or deleted while the Device is Online. Opposite of
Dynamic (definition 29).

72. System Interface Assignment
in Network Application Control (Clause 14.3), a link between a Network Interface and a System I/O
Interface

73. Task
process that runs an Executable within a Device. See Clause 23.1.

74. Worker
object; instance of class OcaWorker or a subclass of OcaWorker

4. Document conventions

1. The word "support"
The phrase "AES70 supports ‘x’ ", where ‘x’ is some function or feature should be interpreted to
mean that AES70 defines one or more mechanisms by which a Device will be able to implement
feature ‘x’ in an AES70-compliant manner.

2. Numeric constants
Numeric constants are decimal unless otherwise stated. Non-decimal number values shall be
expressed in the form 0rx...x, where r is a code for the radix and x is a digit. Values of r shall be
as follows:

 b binary numbers, e.g. 0b1101
 x hexadecimal numbers, e.g. 0x12FE, 0x12fe

3. Programmatic names

Programmatic names are represented in the Rockwell font and colored blue; for example:
OcaMediaTransportApplication.

4. Italics for first use of term
Where a term is first introduced in body text, the term will be set in a bold italic typeface.

5. References
 Normative external references in the text are [enclosed in brackets].
 Nonnormative references to items in the Bibliography (Annex I) are enclosed in {braces}.

6. Class diagram conventions

Class diagrams in this document use UML coding conventions for connector arrows between
elements. In particular:

 - 21 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 Inheritance relationship between a class and one of its subclasses:

 Collection relationship between a class or datatype and something it collects:

where <CD> is a cardinality designator - see below.

 Containment relationship () between a class or datatype and something it contains:

where <CD> is a cardinality designator - see below.

 Usage relationship between a class or datatype and something it uses:

Cardinality designators, indicated by <CD> above, are constructs of the form n..m that indicate
the minimum (n) and maximum (m) item counts allowed in Collection or Container properties.

n and m may be integers. Additionally, m may be the character * which means there is no limit.
If n and m are identical, the simple construct m may be used. For example:

Notation Constraint
1..5 At least 1 item, no more than 5
1..* At least 1 item
2 Exactly 2 items
0..5 Zero to 5 items
0..* Any number of items
* Any number of items

5. AES70 Compliance

Every Device shall implement at least the minimum Device Model elements specified in [AES70-2B], and
shall implement at least one AES70 Protocol. One such AES70 Protocol is defined in [AES70-3].

6. Top-level design

6.1. General

AES70 supports control and monitoring of Devices at the application level. AES70 does not perform
audio or video stream transport, but is designed to integrate with various audio and video signal
transport schemes.

The AES70 control repertoire is extensible, to allow the orderly incorporation of new Device types and
Device upgrades, and generally to support upwards-compatible evolution of function in media networks.

Class Subclass

Class or datatype with
collection property Collected item

<CD>

Class or datatype with
container property Contained item

<CD>

Class or datatype that uses
another class or datatype Used item

 - 22 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

AES70 is intended to support practical media networks that are easy to set up and operate. For simple
networks of 100 nodes or fewer using recommended switches, the setup procedure should not require
technical staff to have advanced networking knowledge. To this end:

1. AES70 Devices can operate using industry-standard data network equipment.

2. AES70 Devices can coexist harmlessly with non-AES70 devices.

3. AES70 Devices may operate in a secure or unsecure mode, as products and applications require.

6.2. Object orientation

6.2.1. General

AES70 describes the control interface of a Device as a set of objects. Each object is a software element that
is an instantiation of a specific class, and has a set of data elements called properties) and a set of
procedural actions (called methods) defined by that class.

All actions and features of AES70 protocols are defined in terms of classes. The functional scope of a
protocol is equivalent to the functional repertoire of the classes it implements. The set of classes
determines what types of objects may be instantiated in the Devices.

A protocol defined in in terms of classes and objects is termed an Object-Oriented Protocol, and is
defined by the union of the following four sets:

 Class definitions, which define the types of objects that may exist in a Device's network control
interface.

 Naming and addressing rules, which define how the objects and their attributes are identified.

 Protocol Data Unit (PDU) formats, which specify the actual formats of transmitted and received
data.

 Protocol Data Unit (PDU) exchange rules, which define the communication sequences used to
effect information exchange.

NOTE This specification is expressed in object-oriented design terms. However, this does not imply that
implementations of those protocols must be programmed in an object-oriented style. The choice of object-
based or non-object-based implementation is up to the implementer.

6.2.2. Classes

6.2.2.1. Inheritance

AES70 classes shall be defined as nodes in a hierarchical tree-like structure which shall start with single,
elemental node (the Root Class), and shall be arranged in order by inheritance. Inheritance means that
each class shall be a more specialized entity (child class) derived from another, less specialized class (the
parent class). A class shall exhibit (inherit) all the features of its parent, except where the definition of that
class specifically overrides an inherited feature.

 - 23 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.2.2. Class specifications in this standard

Normative definitions of AES70 classes are given in [AES70-2A]. Normative specifications for class
identification and general structure that apply to those definitions are given below, in Clauses 6.2.2.3 and
following.

[AES70-2A] specifies two class models, as follows:

1. AES70-2. This model defines the classes and datatypes of the AES70 Core Specification.

7. IP Adaptation. This model defines the datatypes (there are no classes) of the IP Adaptation
specified in Clause 15.

Names of classes and datatypes defined by this standard begin with the string "Oca".

6.2.2.3. Content

Every AES70 class shall consist of the following:

1. A set of elements (properties, methods, and events) - see Clause 6.2.2.5.6.

2. A unique ClassID - see Clause 6.2.2.5.

3. Exactly one parent class (except for the Root Class, which has no parent).

NOTE Standard class names all begin with "Oca" .

6.2.2.4. Nonstandard Classes

Over the lifetime of this standard, it will often occur that specific products, especially complex ones, will
require specialized Control Classes that are not appropriate for inclusion in the standard class tree. Such
classes are called Nonstandard Classes. The standard allows for this through four policies:

1. A Nonstandard Class may inherit from any standard class or from another nonstandard class.

2. A Nonstandard Class should be attached to the standard class tree at the most specific level that
is appropriate.

3. A Nonstandard Class shall be defined in accordance with the inheritance rules listed in Clause
6.2.2.7.

4. The ClassID of a Nonstandard Class shall be constructed in accordance with Clause 6.2.2.4.

6.2.2.5. Class identification

Every class shall be uniquely identified by a construct known as a ClassID. A ClassID shall consist of a
Lineage Key and a Version Number. The Version Number shall specify the revision level of the class.
Lineage Keys are described next.

6.2.2.5.1. Lineage Keys

A Lineage Key shall be a sequence of positive nonzero integer values, nominally of the form i1•i2•i3 ...,
that uniquely identify a class within its siblings at each level of the class tree. i1, i2, i3 and so on are
referred to as Class Indices. Class Index values may be non-consecutive.

 - 24 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

A class's Lineage Key shall specify its entire Inheritance, beginning from the Root Class, extending down
through all related child classes, and ending at the class in question. A Lineage Key shall contain one
Class Index per level of the Inheritance tree, where the Root Class is the first level.

For example, consider a standard class X whose Lineage Key is 1•2•12•7. This Lineage Key shall be
interpreted left-to-right as follows:

 1 designates the Root Class.
 1•2 designates a child of the Root Class.
 1•2•12 designates a child of the class whose Lineage Key is 1•2.
 1•2•12•7 designates the class X, a child of the class whose Lineage Key is 1•2•12.

6.2.2.5.2. Lineage Keys of Nonstandard Classes

The ClassID of a Nonstandard Class shall have two parts. The first part, i1•i2•i3...ik, shall specify the
subtree of standard classes from which the Nonstandard Class subtree inherits. The second part,
ik+1•ik+2•ik+3...iN, shall specify the subtree of Nonstandard Classes that inherits from the lowest-level
standard class, the one whose index is ik.

The nonstandard part of the ClassID shall be prefixed by an Authority ID that identifies the Authority
responsible for defining the Nonstandard Class. The format of the Authority ID is specified in Clause
6.2.2.5.4.

Thus, a complete Lineage Key for a Nonstandard Class shall be of the form
i1•i2•i3...ik, A, ik+1•ik+2•ik+3...ik+n, where k is the number of levels in the standard subtree, and n is the
number of levels in the nonstandard subtree.

6.2.2.5.3. Rules

The complete set of Lineage Key format rules is as follows:

 Each Class Index value i shall be a 16-bit unsigned integer.

 A Lineage Key shall be a sequence of Class Index values in order of inheritance, beginning with
the Root Class's Class index, whose value is always 1.

 An Authority ID may be inserted before any Class Index value except the leftmost (root).

8. Class Index values shall be formulated subject the rules in Table 1, and shall be allocated by the
following mechanisms:

 The Class Index value of a standard class shall be allocated by [AES70-2A].
 The Class Index value of a Nonstandard Class shall be allocated by the Nonstandard Class's

Authority.

 - 25 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 1. Class index value rules

Decimal Hexadecimal Rule

0 0x0000 Shall not be used

1...32767 0x0001...0x7FFF May be used for standard or nonstandard class indices

32768...65279 0x8000...0xFEFF
Reserved for the now-deprecated nonstandard class
numbering scheme defined in AES70-2015; shall not be used
for new designs

65280...65534 0xFF00...0xFFFE Volatile; may be used for testing

65535 0xFFFF Reserved for flag field of Authority ID - see Clause 6.2.2.5.4.

6.2.2.5.4. Authority ID format

The format of an Authority ID shall be as follows (left to right, hexadecimal notation):

Bits 0-15 0xFFFF (flag to identify the start of an Authority ID)
Bits 16-23 0x00 (filler)
Bits 24-47 Authority's IEEE Public Company ID (Public CID) or Organizational Unique

Identifier (OUI)

Note 1: The IEEE (Institute of Electrical and Electronic Engineers) Public CID is a 24-bit identifier which
uniquely identifies an organization. Any incorporated organization may receive a unique Public CID from the
IEEE upon request and payment of a one-time fee. See IEEE-1 and IEEE-2. CIDs and OUIs are non-
overlapping, so either will serve to identify the authority.

The Authority ID value {0xFFFF, 0x00, 0x000000} shall be interpreted as an undefined authority.

6.2.2.5.5. Example of standard and nonstandard ClassIDs

Figure 1 shows the lineage keys of the standard class OcaGain with nonstandard classes that inherit from
it. The ik+1 values of 2300 and 2301 follow the rules for Adaptations given in
[AES70-2(ClassIDs for Nonstandard Classes defined by Adaptations published by the AES)], and the
exemplified IEEE organization ID 0x000B5E is the AES's CID.

 - 26 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 1. Standard and Nonstandard ClassIDs

6.2.2.5.6. Datatypes of class identification elements

Datatypes of class identification elements described in Clause 6.2.2 are summarized in Table 2. These
datatypes are defined normatively in [AES70-2A].

Table 2. Class identification datatypes

Element Datatype Clause

Lineage Key OcaClassID 6.2.2.5.1

Field of Lineage Key OcaClassIDField
6.2.2.5.1
6.2.2.5.4

Class Index OcaUint16 6.2.2.5.1

Authority ID OcaClassAuthorityID 6.2.2.5.4

IEEE CID or OUI OcaOrganizationID 6.2.2.5.4

Class version number OcaClassVersionNumber 6.2.2.5

OcaRoot

OcaWorker

OcaActuator

Parent for all classes

Parent for all Workers

Parent for all Actuators

OcaGain

1

1.1

1.1.1

1.1.1.5

OcaGainStepped 1.1.1.5.0xFFFF.0x000B5E.2300

Standard

OcaGainUnequallyStepped 1.1.1.5.0xFFFF.0x00000B5E.2300.1

1 . 1 . 1 . 5 . 0 x F F F F . 0 x 0 0 0 0 0 B 5 E . 2 3 0 0 . 1

Non-
standard

Class ID

1 . 1 . 1 . 5 . 0 x F F F F . 0 x 0 0 0 0 0 B 5 E . 2 3 0 0

Nonstandard
Class Indices

OcaGain Flag Authority ID

indicates next field is
an Authority ID

 - 27 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

6.2.2.6. Methods, properties, and events

AES70 classes shall have elements which allow access to their data and operating states.

The elements of AES70 classes shall be as follows:

Properties A class shall define properties, which are variables that store the class's specific control
or monitoring parameters that are accessible from the control network.

Methods A class shall define methods, which are procedures that Controllers may invoke via
AES70 protocol commands to retrieve and change property values, to change class
operating states, and to perform other actions.

Events A class may define one or more events, which are callbacks initiated by Devices to
inform Controllers of specific occurrences. To receive events, Controllers shall first
Subscribe to them. See Clause 9.

These elements shall be used to define protocol exchanges between Devices and Controllers. The manner
in which class elements shall be represented in communications-protocol elements is specific to each
AES70 protocol. For one example, see [AES70-3].

6.2.2.6.1. Element IDs

In the class tree, every method, property, and event shall be assigned not only a name, but also an
element ID of the form: LLtNN, where

LL shall be the two-digit level of the class tree at which the class is defined.
For example, the global base class OcaRoot is defined at level 01. Children of OcaRoot will
be defined at level 02. Grandchildren will be defined at level 03. And so on.

t shall be a type code: p for properties, m for methods, e for events.

NN shall be a sequence number starting at 01 for each type (p, m, or e) and for each tree level of
the class.

Within each class, element ID values shall be unique.

EXAMPLE 1

01p01 is the first property of a class defined at tree level 01. In this case, OcaRoot is the only
class defined at level 01, so 01P01 is the first property of OcaRoot.

EXAMPLE 2

03m02 is the second method of a class defined at tree level 03. There are several classes defined
at level 03 - this ID would apply to the second method of any of these classes.

INFORMATIVE NOTES

1. Element ID rules are intended to provide a means for uniquely identifying all the native and
inherited methods in any given class, and to allow for future expansion of the tree at any level
without duplicating identifiers.

2. For an example of this approach, see the class OcaGain in Annex A.

 - 28 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

3. An element ID may be a property ID, a method ID, or an event ID, depending on the type of
element it identifies.

6.2.2.6.2. Method status

All methods shall return a status code which indicates successful completion or, if unsuccessful, the
general reason for failure. Status code values are described by the OcaStatus datatype defined
normatively in [AES70-2A].

6.2.2.6.3. Protocol invariance

For any given class, the following items shall be constant, regardless of which AES70 protocol is used:

 The set of properties, methods, and events; and

 The set of element IDs.

6.2.2.6.4. Text format

All text in AES70 properties, method parameters, and event parameters shall be in UTF-8 format. See
[ISO/IEC 10646].

6.2.2.7. Inheritance and updating rules

Inheritance rules ensure that, by creating new classes from existing classes, new features can be added to
the protocol in a manner that does not impact the operation of existing products or systems. Inheritance
ensures that new child classes support, at a minimum, the functions and interfaces of their parents.

In AES70, the rules for inheritance are:

1. Any given class except the root class shall inherit from exactly one other class.

2. A class shall implement all the properties, methods, and events of its parent class.

3. A child class may expand its parent’s definition by:

a. Adding new properties, methods, and/or events; and/or

b. Enhancing the definitions of existing properties, methods, and/or events, In this case, the
enhanced definitions shall support all functions defined by the parent class.

4. A child class's inherited methods and events shall retain the respective element IDs of its parent
class.

5. A standard class shall not inherit from a proprietary class.

When updating an existing class, the following rules shall apply:

1. The class version number shall be incremented.

2. The updated class shall implement all the properties, methods, and events of the existing class.

3. The updated class may expand the existing class's definition by:
 Adding new properties, methods, and/or events; and/or

 - 29 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 Enhancing the definitions of existing properties, methods, and/or events, In this case, the
enhanced definitions shall support all functions defined by the existing class.

4. An updated class's methods and events shall retain the respective element IDs of its parent class.

6.2.3. Instantiation of classes

As required to create its network control interface, a Device shall instantiate classes as Objects. Each such
Object shall be identified by a unique Object Number (ONo).

6.2.3.1. Containment

In this specification, a class will sometimes be described as Containing another class. This means that an
object of the given class incorporates objects of the other class.

If a Containing object is deleted, the objects of the classes it contains shall be deleted.

6.2.3.2. Collection

In this specification, a class will sometimes be described as Collecting another class. This means that an
object of the given class incorporates references to the objects of the other class.

If a Collecting object is deleted, the objects it collects shall not be deleted.

6.3. Messages

6.3.1. Basic mechanism

Control and monitoring operations shall be implemented by messages in protocol data units (PDUs) that
pass between one object and another object which may be in a different Device. An AES70 message shall
be of one of the following three types:

Command request a Device to return data and/or perform actions.
Acknowledgement report success or failure of a command, and return requested data, if any.
Notification report the occurrence of certain events within a Device, and provide related

data.

With the exception of the Device Reset Message (Clause 28), every AES70 command message shall be
acknowledged by a corresponding acknowledgement message. Notification messages shall not be
acknowledged.

6.4. Control sessions

All AES70 control traffic shall be exchanged in Control Sessions (definition 6.4). The following rules
apply:

1. Requests and responses shall be correlated pairs.
2. Controllers may have persistent application relationships with objects in Devices.

3. Prompt discovery of Device failure shall be required.
4. Devices shall be able to report changing parameter values (for example, signal level) to

subscribing Controllers on a regular and continuing basis.

 - 30 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

5. Controller-to-Device relationships shall survive or be deleted in a predictable manner when
transport interruptions occur.

6.4.1. Control Session Transport

In AES70 protocol specifications, various protocol options are defined for the transport of control traffic.
A set of protocol specifications for transport of control traffic is known as a Control Session Transport
Type.

For example, [AES70-3] defines four Control Session Transport Types: TCP, TLS (i.e. secure TCP), UDP,
and WebSocket. These are specified in [AES70-3(Control Session Transport)].

7. AES70 Adaptations

AES70 Control Classes form a foundation for control and monitoring of a broad range of Devices and
networks. However, it is recognized that AES70 classes may have to be constrained and/or augmented
to support particular applications.

The formal specification of a set of augmentations and/or constraints applied to AES70 for a particular
use is termed an AES70 Adaptation, or simply Adaptation. Adaptations may contain rules for
configuring and using AES70 classes and datatypes, and may define specific refinements (subclasses) of
core AES70 classes. Subclasses may be created at the discretion of the Adaptation designer, when the
core classes do not define the required functionality and/or when it is desired to distinguish particular
usage of core class elements.

All subclasses that Adaptations specify shall be defined in accordance with the rules in Clause 6.2.2.4.

7.1. Adaptation Identifiers

Each Adaptation shall be identified by a concise text string known as the Adaptation Identifier.
Adaptation Identifiers may be freely chosen, except that values starting with "oca" in upper, lower, or
mixed character case are reserved and shall not be used without permission of the AES.

8. Device Model

8.1. Object addressing

Within an AES70 Device, each object (that is, each instantiation of a specific class) shall be identified
uniquely by an Object Number (ONo). An ONo shall be assigned to each object when it is created.
Depending on the containing block’s configurability (see Clause 11.2), objects may or may not be created
at Run Time.

ONo values shall not be re-used when objects are deleted and recreated without an intervening Device
reset. In the unlikely event that the ONo address space becomes exhausted, ONo values may be re-used
in any way that does not violate rules (1)-(5) below.

Device implementers may choose ONo values as desired, subject to the following rules:

1. Each Object Number (ONo) shall be a 32-bit integer.

2. Every object shall have a unique ONo.

 - 31 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

3. No object may have the ONo value of zero. A zero value shall be used to denote the absence of
an object in a given context.

4. ONo values 1 through 4095 shall be reserved for Managers (Clause 8.9) and other objects that
require predefined Object Numbers. Specific values shall be defined by AES70.

5. Different ONos shall not refer to the same object.

NOTE This standard does not define ONos as multi-field (i•j•k. ...) values based on a hierarchy. Using a simple
32-bit ONo value allows implementations to maximize protocol efficiency, and to minimize Device overheads in
resolving object references, handling command responses, and managing errors. Nevertheless, developers may
elect to use specific object numbering schemes. For example, a developer might choose a Device's Object
Number values to correspond with internal table index values, in order to facilitate decoding of incoming
commands.

8.2. Standard Object Numbers (ONo)

Every Device shall assign standard Object Numbers to certain specific objects. These Object Numbers are
given in Table 3. Normative specifications of the listed classes are in [AES70-2A].

Table 3. Manager classes and standard Object Numbers

ONo Class name

M=mandatory, O=optional

 Function(s)
See

Clause

1 OcaDeviceManager M
Shall manage information relevant to the whole Device -
including model and serial number, Device name and role,
overall operating state, and Device control lock.

2 OcaSecurityManager O Shall manage security keys.

3 OcaFirmwareManager O
Shall report firmware/software versions and optionally
perform firmware updating.

4 OcaSubscriptionManager M
Shall manage subscriptions, the constructs by which
Devices inform Controllers of significant events. 9

5 OcaPowerManager O
Shall manage Device power state, including multiple
power supplies, battery supplies.

6 OcaNetworkManager O
Shall collect the Device's Network Interface and Network
Application object(s).

0

7 OcaMediaClockManager O Shall collect media clock objects. 8.6.5

9 OcaAudioProcessing
Manager O Shall manage global audio processing parameters.

10 OcaDeviceTimeManager O Shall provide access to Device time-of-day clock.

13 OcaDiagnosticManager O
Shall provide functions to aid in network system setup and
diagnosis.

14 OcaLockManager O Shall provide functions to help Controllers lock objects. 26

100 OcaBlock M
Root Block. Not really a Manager, but shall be instantiated
in every Device. 9

 - 32 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.3. Text identification of Control Objects

8.3.1. Role

Every Control Object shall include a read-only text property Role, which should be used to state the
object's purpose in the Device; for example, "Preamp Gain".

Implementation of Role is optional. However, if a Device implementation does support Role, then:

 The value of Role shall be set when the object is created.
 Once set, the value of Role shall not be changed.
 Role values should be unique within each Block.
 The empty Role value shall be reserved for the Root Block.

The term Role Path or just Path shall mean an ordered set of Role values that identifies an object within a
given Block. The identified object may be directly contained in the given Block, or it may be inside a
hierarchy of Blocks contained by the given Block.

The first Role value in the Path shall be the Role of the object the first level down in the containment
hierarchy. The last value in the Path shall be the Role of the identified object.

For example, if the identified object is directly contained in the given Block, the Path shall contain exactly
one element, the Role of that object. If the identified object is down in a hierarchy of contained blocks, the
Path shall begin with the name of the immediately-contained inner block and shall end with the Role of
the identified object.

8.3.2. Label

Every Control Object except a Manager shall include a writable text property Label that Controllers may
use to record the function of the object in the application context; for example, "Elvis Vocal Gain". The
value of Label may be freely chosen, and shall have no programmatic significance.

 - 33 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.4. Device Model elements

8.4.1. General

Figure 2 illustrates the Device Model. The boxed elements are objects. Details of the classes that define
these objects are defined in [AES70-2A]. Here we summarize the available classes, giving examples and
focusing on those with particular architectural significance.

Figure 2. Device model

8.4.2. Object categories

The Device Model contains the following categories of objects:

1. Workers. Worker objects typically control media signal processing functions of the Device - see
Clause 8.5. Examples: audio mute switch, gain control, equalizer, level sensor. Workers may
expose Ports - see Clause 10.7.1.

9. Agents. Agent objects control and monitor non-signal-processing actions within the Device. An
Agent object shall have no Ports.

10. Network interfaces. Network Interface objects shall describe endpoints of external
communication networks to which the Device is connected.

11. Network applications. Network Application objects shall control the application functions that
use Network Interfaces to perform their tasks.

 - 34 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

12. Datasets. Dataset objects shall control handling of Datasets (definition 25) stored in the Device.

13. Managers. Managers shall affect or report the basic attributes and overall states of the Device,
and collect Object Numbers of certain key objects. Within each Device there shall be only one
instance of each Manager class (that is, one Device Manager, one Security Manager, and so on).
Each Manager shall have a standard Object Number. Some Managers are required, others are
optional - see Clause 8.9 and [AES70-2].

Within a Device, any non-Manager class may be instantiated as many times as necessary to implement the
required degree of control and monitoring functionality.

Normative definitions of all the classes in all these categories are in [AES70-2A]. Rules and concepts
governing those definitions are given below.

8.5. Worker classes

Workers shall be classified as shown in Table 4.

Table 4. Kinds of workers

Actuators provide control of application functions (a switch, for example)

Sensors detect and report signal parameters and other values back to
Controllers

Blocks Containers for related objects and associated control information

Matrices allow Collections of objects to be addressed as two-dimensional
arrays

Dataset Workers provide access and management functions to Datasets that
contain media data

8.5.1. Actuators

Actuators shall control signal-processing and housekeeping functions within a Device. Actuator classes
are defined in [AES70-2A]. A complete example is given in Annex A.

Examples include:

OcaGain Controls a gain function.

OcaMute Controls a signal mute function.

OcaSwitch Controls a multiposition selector.

OcaFilterParametric Controls a parametric equalizer section.

OcaDelay Controls a signal delay.

OcaDynamics Controls a limiter, compressor, expander, or gate.

OcaTemperatureActuator Controls a temperature setting.

 - 35 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.5.2. Sensors

Sensors shall detect the value of some parameter and transmit it back to Controllers. Sensor classes are
defined in [AES70-2A]. Examples include:

OcaLevelSensor Senses a signal level.

OcaAudioLevelSensor
Senses an audio signal level using standard VU or PPM
averaging and ballistics.

OcaTemperatureSensor Senses a temperature.

Sensor values may be transmitted automatically, on a periodic or conditional basis (for example, when it
exceeds a defined threshold), by using an OcaNumericObserver or OcaNumericObserverList Agent -
see Clause 8.6.4.

8.5.3. Blocks

Blocks shall be Containers for Action Objects and Dataset Objects. See Clause 9 and Clause 11.

8.5.4. Matrices

Matrices shall be two-dimensional Collectors of Worker objects. See Clause 12.

8.5.5. Dataset workers

Dataset workers shall be classes that provide streaming input/output access to the contents of Media
Volume Datasets. See Clause 22.

8.6. Agent classes

8.6.1. General

This clause defines Agent class concepts and semantics. Specific Agent class properties, methods, and
events are specified normatively in [AES70-2A].

8.6.2. OcaGroup

OcaGroup shall be a control aggregator, to support such functions as ganging and mastering. See Clause
8.6.2. This class is new in AES70-2024, and replaces the now-deprecated OcaGrouper class.

8.6.3. OcaRamper

OcaRamper shall define a mechanism (Ramper) by which Controllers may cause Devices to execute
incremental or prescheduled parameter changes automatically.

Each Ramper shall be bound to a particular Worker property. Ramper parameters shall include target
property value, ramp duration, ramp start time, and ramping interpolation law.

Each Ramper shall maintain a State property whose value can be monitored by Controllers to determine
ramping status, for example: waiting to start, in process, complete, or aborted.

 - 36 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTE The rationale for OcaRamper is as follows: For network performance reasons, it is usually
impractical to implement incremental changes (fade-ins, fade-outs, and crossfades) by sending sequences
of AES70 commands over the network, because the amount of control traffic required would be excessive.
Furthermore, timing accuracy of ramping actions will be more precise if not subject to network delays. Also,
it may not be possible to implement prescheduled parameter changes in Controllers, because application
systems may need to execute such changes when Controllers are not running.

8.6.4. OcaNumericObserver and OcaNumericObserverList

OcaNumericObserver shall define an object (Observer) that shall monitor the value of a specified
numeric property in another object and shall, under certain conditions, notify subscribing Controllers of
the value. OcaNumericObserver is part of the Event and Subscription mechanism, and is described in
Clause 9.

OcaNumericObserverList shall define an Observer similar to that defined by OcaNumericObserver,
except that OcaNumericObserverList Observers shall be capable of monitoring the values of a given list
of numeric properties in other objects.

8.6.5. OcaPowerSupply

OcaPowerSupply shall describe a Device power supply. OcaPowerSupply objects shall be collected by
the OcaPowerManager object.

8.6.6. OcaTaskAgent

See Clause 23.4.

8.6.7. OcaTaskScheduler

See Clause 23.5

8.6.8. OcaMediaClock3

OcaMediaClock3 shall describe a particular internal or external media clock which a Device uses. It shall
include features for specifying available and current clock frequencies, and shall optionally link to an
OcaTimeSource object that describes the time reference source the media clock uses.

A Device may define any number of media clocks; each one shall be represented by its own instance of
OcaMediaClock3. All these instances shall be collected by the Media Clock Manager (class
OcaMediaClockManager).

If a Device has no network-controllable clocking features, it need not instantiate
OcaMediaClockManager or OcaMediaClock3.

8.6.9. OcaTimeSource

OcaTimeSource shall describe an internal or external time reference to which a Device's media clocks
may be synchronized.

An OcaTimeSource object may be the reference for any number of OcaMediaClock3 objects, and a
Device may instantiate any number of OcaTimeSource objects. All instances of OcaTimeSource shall be
collected by OcaMediaClockManager.

 - 37 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

8.6.10. OcaPhysicalPosition

OcaPhysicalPosition shall describe the physical position of a real or abstract point in space. The position
may be reported in various coordinate systems - see Clause 18.

8.6.11. OcaCounterNotifier

See Clause 24.

8.6.12. OcaMediaTransportSessionAgent

See Clause 16.5.

8.6.13. OcaBlockFactoryAgent

See Clause 11.3.

8.6.14. OcaCommandSetAgent

OcaCommandSetAgent shall provide functions for calling multiple methods of multiple objects with a
single command. See [AES70-2A] for the normative specification.

8.7. Network classes

See Clause 14.

8.8. Dataset classes

See Clause 19.

8.9. Manager classes

Manager classes are defined normatively in [AES70-2A] and listed in Table 3. Manager classes
deprecated in AES70-2023 are listed in Table 5.

Table 5. Deprecated Manager classes

ONo Class name Function(s)
See

Clause

8 OcaLibraryManager
Shall manage Device libraries. Libraries are an obsolete feature
that is superseded by the Dataset mechanism and classes that use
it.

H.1

11 OcaTaskManager Shall manage Tasks. H.2

12 OcaCodingManager
Shall manage the Device's media encoding and decoding
repertoire.

H.4

 - 38 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

9. Events and subscriptions

9.1. Versions of the event and subscription mechanism (Informative)

The 2023 version of this standard defines a new version of the event and subscription mechanism
identified as EV2. The prior version of the event mechanism is identified as EV1. EV1 is deprecated.
Details of the deprecated features are in Annex H, Clause H.3.

EV2 is a more efficient event mechanism than EV1. It reduces Device memory requirements and
simplifies Controller event processing.

It is possible (but not recommended) for a Device to support both the EV2 mechanism and the EV1
mechanism.

9.2. Subscriptions, events, emitters, and notifications

9.2.1. General

Subscription means a persistent relationship between a Controller and an object, in which the object
sends update messages to the Controller automatically, when certain specified conditions in the Device
occur. Such conditions are termed Events, the transmitting object is termed an Emitter, and the
transmitted message is termed a Notification, and the receiving Controller is termed the Subscriber.

A Notification type shall be specifically defined for each type of event. An object that sends a notification
is said to raise the related event.

An Emitter may implement more than one type of Event, and may therefore emit more than one type of
Notification.

Subscriptions shall be set up by the Subscription Manager, an OcaSubscriptionManager object (Clause
8.9); a request to the Subscription Manager to set up a subscription is called a Subscription Request.
Parameters in a Subscription Request are called Subscription Parameters.

9.2.2. Notification Delivery Mode

When it is created, a Subscription shall be assigned a Notification Delivery Mode. The Notification
Delivery Mode shall indicate the network transport mechanism to be used for delivering the
Subscription's Notification messages to the subscribing Controller. Two Notification Delivery Mode
options are defined:

 Normal mode. In this mode, Notification messages shall travel via the same network transport
mechanism that Command and Response messages use.

 Lightweight mode. In this mode, Notification messages shall travel via a network transport
mechanism different from the one used for Command and Response messages. Where possible,
this mechanism shall be faster and less network traffic intensive than that of Normal mode, even
at the expense of reliability.

In some cases, Lightweight mode may allow transmission of Notification messages over
multicast channels.

 - 39 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Every Control Session Transport Mode (Clause 6.4.1) shall define the implementation of these two modes
for the specific protocols involved.

NOTE For some Control Session Transport Modes, Normal and Lightweight modes will be identical.

The rationale for having the two modes is to provide a means for efficient transport of frequent and
possibly numerous Notification messages, especially when those messages are of a noncritical nature.
For example, Lightweight mode will be useful for the transmission of audio level sensor readings.

NOTE In previous versions of AES70, Normal and Lightweight modes were named Reliable and Fast,
respectively. Regardless of names, the functions are the same.

9.2.3. Subscription deletion

Subscriptions shall persist until the Controller deletes them or until they are abandoned. An abandoned
Subscription is a Subscription whose Subscriber's Control Session ceases to exist.

NOTE Detection of Subscriber failure can be done by using keep-alive messages - see Clause 27.1.1.

When a Device detects a Subscriber failure, it shall delete all Subscriptions which were made by the failed
Subscriber, except possibly for Subscriptions which have been aggregated - see Clause 9.3.

When a Subscription is deleted for any reason, a Notification of type EXCEPTION shall be sent to its
Subscriber. See Clause 9.2.4.1.

9.2.4. Notifications

9.2.4.1. Notification type

A Notification shall have one of two types, as follows:

 Type EVENT, which designates a normal Notification that announces the occurrence of its
associated Event.

 Type EXCEPTION, which announces the termination of the Subscription and indicates the reason
for the termination.

9.2.4.2. Spurious Notifications

If a Notification is delivered to a Subscriber that has no Subscription for that notification, the Subscriber
shall ignore the Notification without indicating a protocol error.

9.2.5. Limits

AES70 does not limit the number of Subscribers to an event. However, in practice there will be
implementation limits that vary from one Device to another.

9.3. Subscription aggregation

For network and processing efficiency, a Device may optionally perform Subscription Aggregation,
which is a way of transmitting single Notifications for multiple identical Subscriptions that use
Lightweight delivery mode with a common multicast address.

 - 40 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Subscription Aggregation shall function as follows:

1. When:

 a Device creates two or more Subscriptions for an Emitter, and
 those Subscriptions use Lightweight Notification Delivery Mode, and
 the current Lightweight Notification Delivery Mode supports multicasting, and
 the Subscription Parameters for those Subscriptions obey certain conditions,

then the Device may send each Notification for those Subscriptions via a single multicast
message, rather than as individual messages to each Subscriber. The set of such subscriptions is
called a Subscription Group, and each subscription in the group is called a Subscription Group
Member.

14. Subscriptions may be grouped when the Subscription Parameters for all the related subscriptions:

 specify Lightweight delivery mode, and
 specify the same (non-null) multicast address.

15. When a Member of a Subscription Group is deleted, the group shall persist for the remaining
Members.

9.4. The PropertyChanged event

The Root Class OcaRoot shall define an event named PropertyChanged which can be raised whenever
the value of a property changes.

PropertyChanged Subscriptions may be used for such purposes as:

 Monitoring object state changes;
 Monitoring overall Device state;
 Updating Controllers to match adjustments to user interface controls;
 In multi-Controller systems, synchronizing statuses and property values among the various

Controllers.

Two kinds of PropertyChanged Subscriptions are available:

 A generic Subscription, created by a call to the Subscription Manager's AddSubscription(...)
method, that causes a PropertyChanged Notification to be emitted whenever the value of any of
the specified object's properties changes;

 A specific Subscription, created by a call the Subscription Manager's
AddPropertyChangedSubscription(...) method, that causes a PropertyChanged notification
whenever the value of a particular property changes. The property is identified in the method call.

Data returned to the Subscriber shall identify which of the object's properties has changed.

Note. Through the class inheritance mechanism, the PropertyChanged event is defined for every AES70
class. Thus, a Controller can monitor the property values of an object simply by subscribing to its
PropertyChanged event. Since all an AES70 Device's controllable parameters reside in the properties of
its Control Classes, the PropertyChanged event allows complete and timely access to the Device's
controllable operating state.

 - 41 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

9.5. Numeric Value Observers

A Numeric Value Observer shall be an object that monitors a specified parameter value and raises an
Event named Observation whenever specified observation criteria are met. Each Numeric Value
Observer shall be an instance of the OcaNumericObserver class defined in [AES70-2A], or of a subclass
of OcaNumericObserver.

Where required, a Numeric Value Observer may be created in a Device, assigned relevant criteria -
numeric test, periodic repetition rate, or both - and bound to the property to be observed. A Controller
may then subscribe to the Numeric Value Observer's observation Event. Subsequently, whenever
conditions meet the Numeric Value Observer's criteria, the Numeric Value Observer shall transmit an
observation Notification to the Controller.

NOTE 1 Numeric Value Observers may be created at time of Device manufacture, or, for sufficiently
configurable Blocks, by Controllers at a later time.

NOTE 2 Numeric Value Observers will commonly be used in conjunction with Sensor objects (for example,
audio level sensors), but can be used equally with any property of any object. For example, a Numeric Value
Observer may be defined that emits a Notification whenever someone raises the gain of a power amplifier
above some threshold level.

Figure 3 shows an example of a Numeric Value Observer that implements a signal-present light in a
Controller.

Figure 3. Using a Numeric Observer to implement a signal-present light

10. Blocks

10.1. Basic mechanism

A Block shall be a special kind of Worker that may contain Action Objects (definition 1), including other
Block objects (definition 9), and/or Dataset Objects (definition 26). A Block may also specify a Signal Flow
(Clause 10.7).

Normative definitions of Block classes are in [AES70-2A].

 - 42 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Blocks may be nested to any depth.

Every Device shall have a Root Block. The Root Block shall contain all the Device's Action Objects and
Dataset Objects, either directly or in nested Blocks. The Root Block shall not be contained in any other
Block.

Every Action Object and Dataset Object shall be a Member of exactly one Block. Managers shall not be
members of any Block.

In simple Devices, all the Action Objects and Dataset Objects may be members of the Root Block. In more
complex Devices, Action Objects and Dataset Objects may be organized in nested Blocks.

Each Block shall be an instance of a Block class. The base class for all Block classes shall be OcaBlock.

NOTE Blocks are abstract Containers which make minimal assumptions about Device structure and control
flow. There are no predefined Block types and no assumptions about what objects Blocks might Contain. A
Device may have any arrangement of Blocks or no Blocks other than the Root Block.

10.2. Block Member enumeration

The list of Action Objects Contained by a particular Block is termed the Block's Action Object List. The
list of Dataset Objects Contained by a particular Block is termed the Block's Dataset Object List. These
two kinds of lists are collectively termed Member Lists.

Every Block shall provide methods for retrieving lists and Dataset Object lists. Retrieving such lists is
referred to as Block Member Enumeration. Block Member Enumeration methods shall be defined by the
OcaBlock class.

OcaBlock shall define enumeration methods that return only directly contained objects, and other
methods that return all objects inside nested Blocks to any level.

10.3. Block modification

Some implementations may allow creating and deleting Block Members at runtime. See Clause 11 for
details.

10.4. Blocks and object addressing

Addressing of objects shall be provided by Object Number. AES70 does not define a hierarchical Object
Number allocation scheme based on Block containment. However, manufacturers are free to choose
Object Number values that are representative of a Device's Block structure, if desired. Such choices are
outside the scope of AES70.

10.5. Block searching

Every Block shall include methods that allow Controllers to search for its Action Objects and Dataset
Objects, based on various criteria .

10.5.1. Action Object searches

The following forms of Action Object search shall be supported:

 - 43 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 Retrieve Action Object(s) given a Role value; search either in the given Block only, or in the
given Block and all nested Blocks to any level.

 Retrieve Action Object(s) given a Label value; search either in the given Block only, or in the
given Block and all nested Blocks to any level .

 Retrieve Action Object(s) in the given Block or any contained Block, given a Path value.
"Path" is defined in Clause 8.2.

10.5.2. Dataset Object searches

The following forms of Dataset Object search shall be supported:

 Retrieve Dataset Object(s) with a given name and/or type (see Clauses 19.2 and 19.3), with
various wildcard and comparison options; search either in the given Block only, or in the
given Block and all nested Blocks to any level.

10.6. Blocks and Control Aggregation

Blocks are Containers of objects, but do not provide control functions for those objects. For example, the
inclusion of an Action Object in a Block shall not imply Aggregation of its control functions such as
ganging, grouping, or mastering.

NOTE AES70 control function aggregation is provided by the OcaGroup class. The OcaGroup

mechanism is independent of Block boundaries, and fully supports multiple overlapping grouping functions -
see Clause 8.6.2.

10.7. Signal flow control

AES70 defines the Signal Flow Control mechanism, which shall allow Controllers to discover and, in
some cases, modify Signal Flows among processing elements inside a Block and among Blocks.

The Signal Flow Control mechanism is an optional Block feature that need not be implemented for AES70
compliance. A Device may implement this mechanism in all, some, or none of its Blocks.

10.7.1. Ports

For the purpose of defining Signal Flows, Worker and Network Application objects may contain Ports. A
Port is a data element defined by the OcaPort class that describes one input or output signal channel of
the processing function that the Worker or Network Application object represents.

An Input Port shall represent Signal Flow into the processing function; an Output Port shall represent
Signal Flow out of the processing function.

NOTE For readability in what follows, the text will generally describe signal connections between signal
processing functions in terms of the objects which represent those functions. For example, to denote a
signal connection from the processing function described by object A to the processing function described
by object B, the text will read, "a signal connection from object A to object B".

10.7.2. Clock maps

A Port may optionally be associated with a particular media clock. A worker’s PortClockMap property
shall contain a map that associates its ports with OcaMediaClock3 (Clause 8.6.5) media clock objects.

 - 44 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

10.7.3. Block ports

Blocks are Workers, and may therefore have Ports. Such ports are termed Block Ports. Block Ports shall
be intermediate Ports that exist to define signal connection points between objects inside the Block and
objects outside the Block.

A Block Input Port shall be a connection point for signals entering the Block. To objects inside the Block,
a Block Input Port shall appear as a signal source. A Block Output Port shall be a connection point for
signals leaving the Block. To objects inside the Block, a Block Output Port shall appear as a signal
destination.

10.7.4. Signal paths

The term Signal Path shall denote a connection between a specific output Port and a specific input Port in
the same Device. A Signal Path's Input and Output Ports may be in different objects or in the same object.
Signal Paths between objects in separate Blocks may be defined directly, or intermediate Block Ports may
be configured.

NOTE For routing signals among objects in diverse Blocks, the use of intermediate Block ports is
recommended. Schemes that use direct connections between objects in different Blocks tend to be difficult
to manage in larger configurations.

10.7.5. Signal flow of a Block

A Block's Signal Flow shall comprise the set of all Signal Paths with at least one end inside the Block. A
Signal Flow is defined by its Signal Path List.

The Block's Signal Flow shall exclude Signal Paths that extend from Block Ports to other Ports outside the
Block. Such Signal Paths belong to the overall containing Block. The outermost containing Block shall
always be the Root Block.

Media Stream Connections between one Device and another shall not be considered part of Device Signal
Flow. Control of media stream connections between Devices is described in Clause 15.

OcaBlock shall provide methods for retrieval of the Signal Path List of any specified Block. Options shall
be provided to enumerate directly contained Signal Paths only, or to enumerate recursively all directly
contained Signal Paths plus all signal paths inside nested Blocks to any level.

Figure 4 shows an example of Signal Flow.

 - 45 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 4. Signal Flow

10.8. Examples

Further examples of Blocks and Signal Flows are given in Annex B.

11. Constructing and deleting objects

11.1. General

Every AES70 object except a Manager shall be a Member of a Block. In simpler Devices, there may be
only one Block - the Root Block, which is always mandatory. In more complex Devices, the Root Block
may contain other Blocks that contain some of the objects.

Depending on a Block’s Configurability (see Clause 11.2), a Controller may be able to add and delete
Block Members. OcaBlock provides the configuration management methods listed in Table 6.

 - 46 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 6. Block configuration management methods

Method name Function

ConstructActionObject(...)
Constructs an Action Object and adds it to the Block. Can construct
any kind of Action Object (including Block) but not a Dataset or
Manager.

ConstructDataset(...)
Constructs a Dataset and its Dataset Object; adds the Dataset
Object to the Block. If the InitialContent parameter is nonempty,
stores its contents in the Dataset.

ConstructBlockUsingFactory(...)
Constructs a nested Block using a designated
OcaBlockFactoryAgent object (see Clause 11.3) and adds it to the
Block.

DeleteMember(...)
Deletes the Member (i.e. either Action Object or Dataset Object) with
the given ONo from the Block. When a Dataset Object is deleted,
the corresponding Dataset is deleted as well.

AddPort(...)
DeletePort(...)

Inherited from OcaWorker. Add and delete Block Ports from the
Block.

AddSignalPath(...)
DeleteSignalPath(...) Add and delete Signal Paths from the Block.

To construct an entire Block without using a Block Factory, the Controller shall call the
ConstructActionObject(...) method to create an empty Block, then call the new Block’s methods to
populate it.

When an Action Object with Ports (i.e. a Worker or Network Application Object) is deleted, all Signal
Paths that connect to it shall be deleted by the Device automatically.

When a Block is deleted, all objects within it shall be deleted by the Device automatically.

Locked objects shall not be deletable.

11.2. Block Configurability

Block Configurability refers to the ability of a Device to modify a Block’s contents Dynamically, i.e. at
Run Time. Such modification may be triggered by a command from a Controller or by the Device itself. A
Block has three categories of configurability:

 Action Object Configurability, which refers to the ability to add and/or delete Action Objects at
Run Time;

 Signal Path Configurability, which refers to the ability to add, change, and/or delete Signal Paths
at Run Time;

 Dataset Configurability, which refers to the ability to add and/or delete Datasets and Dataset
Objects at Run Time.

The OcaBlock property Configurability (datatype OcaBlockConfigurability) shall specify each of these
configurabilities for the Block.

 - 47 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTE The Configurability property only indicates the configurability by basic categories, but is not intended
to represent detailed abilities by individual classes and/or object instances. For instance, a Block may allow
Controllers to create and delete some kinds of Action Objects but not others. Precise characterization of
such configurabilities is out of AES70’s scope, and is left up to implementations.

11.3. Block Factories

11.3.1. Concept (Informative)

In some use cases, Controllers may need to construct multiple Blocks of the same kind at Run Time. For
example, a virtual mixer might have a user-selectable number of inputs, where each input’s processing
structure is pre-configured in a particular prototype Block. In this case, the Controller would construct
input channel Blocks during runtime, according to the number requested by the user. The AES70
mechanism for supporting such use cases is the Block Factory. A Block Factory is an Agent that
constructs a preconfigured Block with a defined set of Members, Block Ports, and, optionally, Signal
Paths.

11.3.2. General

A Block Factory shall be an instance of class OcaBlockFactoryAgent, defined normatively in [AES70-2A].

Configurability permitting, it shall be possible to define a Block Factory that constructs Action Objects,
Dataset Objects (and Datasets), or both.

Block Factories may be defined by the Device's firmware and/or - Configurability permitting - by a
Controller at Run Time.

11.3.3. Prototypes

A Block Factory shall be able to hold the following prototype elements:

1. Prototype Action Objects;
2. Prototype Dataset Objects;
3. Prototype Ports;
4. Clock Map (Clause 10.7.2);
5. Prototype Signal Paths.

When any of these elements is nonempty, it shall be realized each time the Block Factory constructs a
Block.

11.3.4. Prototype Object Numbers

AES70 requires Object Numbers to be unique within each Device. To accommodate this constraint, a
Block Factory’s prototype members shall be given Prototype Object Numbers that shall be replaced by
new unique Object Numbers each time the Block Factory constructs a new Block.

Each OcaBlock shall contain an Object Number map, or ONoMap. The ONoMap shall be an OcaMap
property that contains one entry for each prototype Object Number in the defining Block Factory, and
shall specify the mapping of Prototype Object Numbers to actual Object Numbers.

 - 48 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

11.4. Reusable Blocks

11.4.1. General

The AES70 Reusable Block Feature shall provide a mechanism whereby well-known Block definitions
can be maintained outside of particular Device implementations and be reused in multiple Devices.

The Reusable Block Feature is part of the AES70 standard, but definitions of specific reusable Blocks are
not. Definitions of specific reusable Blocks shall not be added to the standard class tree.

NOTE The rationale for the Reusable Block Feature is to:

 Allow manufacturers to define standard Blocks for all their products and for sharing with other
manufacturers.

 Allow standards organizations to define standard Blocks for general industry use.

11.4.2. Block type identifier

A reusable Block shall be constructed in the same way as a non-reusable Block except that the reusable
Block's GlobalType property shall be set to a unique Block Type Identifier - see below. In a non-reusable
Block, the GlobalType property shall be null.

NOTE The purpose of the GlobalType property is to give Controllers a way of recognizing reusable
Blocks.

A Block Type Identifier shall consist of a unique Organization ID that identifies the owner of the reusable
Block's definition, followed by a sequence number that is unique within the AES70 environment of that
owner. Organization IDs shall be IEEE OUI or CCI values, the same as are used in the Authority ID term
of the Class ID - see Clause 6.2.2.5.4.

The normative definition of a Block Type Identifier is the OcaGlobalTypeIdentifier datatype defined in
[AES70-2A].

11.4.3. Instantiation of reusable Blocks

Reusable Blocks shall be instantiated in a Device in the normal ways for Blocks, i.e. either built at time of
manufacture, or created later, during configuration processes or at Run Time.

12. Matrices

12.1. General

AES70 matrix architecture is a generalization of the familiar audio crosspoint matrix concept. In this
document, Matrix means a rectangular array of Worker objects (Members) that share one or more
common input and output busses for the rows and columns, respectively.

All of a Matrix's Members shall be objects of the same class, termed the Member Class. A Matrix Member
may be of any Worker class, even OcaBlock.

12.2. Matrix structure

A Matrix shall be an instance of the OcaMatrix class. The Matrix's members shall be instantiated
separately, not contained within the Matrix. The Matrix shall reference its Members by Object Number.

 - 49 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

A Matrix may contain other Matrices, but shall not contain itself.

12.2.1. Sparseness

A Matrix may be sparse, i.e. it is not required for a Member to exist at every position (row/column
intersection). The OcaMatrix property Members contains an array of Object Numbers that specify the
objects at each position. A zero Object Number value shall designate the absence of a Member at the
position in question.

12.3. Matrix addressing

As illustrated in Figure 5, members shall be addressed by (x,y) coordinates, where x is the horizontal
(column) number, and y is the vertical (row) number.

Coordinate values shall range from zero to the (number of rows or columns - 1). The maximum column
count and maximum row count is 65,535; hence, the maximum coordinate value is 65,534. In one
particular context, the coordinate value 65,535 has a special purpose - see Clause 12.5.1.1.

Figure 5. AES70 matrices

12.4. Complex members

A Matrix Member may be of any Worker class, even OcaBlock. For example, Figure 7 shows a Matrix of
Blocks, where each Block is as shown in Figure 6.

Figure 6. Matrix Member that is a Block

mute gain equal-
izer delayin out

 - 50 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 7. Matrix of Blocks

12.5. Accessing Members

12.5.1. Execute methods (Informative)

OcaMatrix has two methods that provide aggregate access to Matrix Members. These methods both
allow a single OCA method call to invoke calls to methods in multiple Members. The primary purpose
of these methods is to allow Controllers to make wholesale changes to Matrices efficiently.

The methods are as follows (normative specifications are in [AES70-2A]):

 ExecuteMethod(...). This method calls the same method with the same input parameters in
a given list of Matrix Members, and returns the status and returned parameter values, if any,
from each call.

 ExecuteCommands(...). This method calls an arbitrary set of methods with individual
parameter sets for each call ("commands"), and returns the status and returned parameter
values, if any, from each command. A called method may be an element of any Member. If a
given method in a given Member is referenced multiple times, it shall be called once for each
such reference.

NOTE This rule allows a given object to be mentioned multiple times. For example, one
ExecuteCommands(...) call may call several methods in one object.

Most commonly these methods will be used to call Member Set(...) methods, to set the values of
operating parameters such as gain, delay, equalization, and so on. However, they may be used to call
any Member method.

12.5.1.1. Execute method Member addressing

Both Execute methods address Members using (x,y) coordinates, as specified in Clause 12.3.

In addition, ExecuteMethod(...) has a "wild-card" feature by which an x value of 65535 designates all
columns, and a y value of 65535 designates all rows. For example:

 The coordinate pair (65535,2) designates all Members in row 2;
 The coordinate pair (3,65535) designates all Members in column 3;
 The coordinate pair (65535,65535) designates all Members of the Matrix.

M G E DM G E D

M G E DM G E D

M G E D M G E D

 - 51 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

12.5.2. Direct access

Members may be accessed directly using their Object Numbers. When this occurs, the Matrix mechanism
is bypassed but shall not be damaged.

12.5.3. Concurrent changes to Matrices (Informative)

Implementations should take care to prevent malfunctions caused by changes to Matrix membership that
occur while group operations are in progress. Methods making such changes may return the status value
Busy when rejecting them. Method status options are defined by the OcaStatus datatype specified in
[AES70-2A].

12.6. Matrix signal flow

A Matrix shall have input and output Ports (Matrix Ports) that are separate from the input and output
Ports of its Members. Matrix rows shall correspond to Matrix Input Ports; matrix columns shall
correspond to Matrix Output Ports. A Matrix may have one or more Matrix Input Ports per row, and
may have one or more Matrix Output Ports per column.

In any given matrix, Nin, the number of matrix input ports per row shall be the same for all rows, and Nout,
the number of matrix output ports per column shall be the same for all columns.

The input and output Ports of each Member of a Matrix shall be connected to Matrix Input and Output
Ports sequentially, according to the following rules:

1. The ith Input Port of a Member in row y shall be connected to Matrix Input Port (i + Nin(y-1)).

2. The jth Output Port of a Member in column x shall be connected to Matrix Output Port
(j + Nout(x-1)).

Each Member shall have a sufficient number of Ports to support the above rules. Specifically, each
Member shall have at least Nin Input Ports and Nout Output Ports.

A Member may have additional Ports that do not connect to Matrix Ports. The number of such additional
ports may vary from Member to Member.

Figure 8 illustrates Matrix Port relationships for two objects in a 4 x 3 Matrix with 2 Ports per row and 3
Ports per column.

 - 52 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 8. Matrix Port relationships

12.7. Application notes (Informative)

12.7.1. Non-mixing applications

Matrices are defined rather generally and may find use not only for the representation of traditional
audio matrix mixing, but for other applications which require addressing sets of objects as one- or two-
dimensional arrays. Such applications may or may not make use of Matrix Input and Matrix Output
Ports.

For example, a loudspeaker crossover might be represented as a Matrix of crossover channels, with each
channel being a Block containing the usual filters, gain elements, delays, and dynamics controls. In this
case, the channels might share a common input which could be represented by a Matrix Input Port.
However, they would use separate output ports, so no Matrix Output Ports would be required.

12.7.2. Non-summing output signal combining

When multiple Member Output Ports connect to a single matrix column, all Member output signals
would, in conventional implementations, be summed to create the final column signal output. However,
the AES70 control abstraction does not require such behavior; a Matrix may use other output signal
combining algorithms.

 - 53 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

13. Control Aggregation

Devices may implement Control Aggregation (definition 16) using objects of class OcaGroup, defined
normatively in [AES70-2A].

NOTE Previous versions of AES70 defined a class named OcaGrouper for this purpose. OcaGrouper is
now deprecated. New implementations should use OcaGroup.

13.1. Basic mechanism

OcaGroup shall define an object that collects a set of Worker objects in a way that makes them
collectively controllable. The collected set of objects, together with the OcaGroup (or subclass of
OcaGroup) object that collects them, is known as a Group.

NOTE 1 Groups support audio control functions variously known as ganging, linking, mastering,
submastering, and VCA mastering.

No signals shall pass through Groups - they shall deal with control parameters only.

The term Group Setpoint refers to a Group's setting for a particular property. A Group shall maintain a
separate Group Setpoint for each property the Device requires the Group to control.

For example, the OcaFilterParametric class defined in[AES70-2A] represents a parametric equalizer with
three primary properties - Frequency, Shape, and InbandGain. However, the Device may need to group
only the Frequency property. In this case, the Group shall maintain separate a Group Setpoint for
Frequency, but not for InbandGain or Shape.

The Members of a Group need not be all of the same class, as long as they share the properties being
grouped. For example, a Device could group a set of OcaFilterParametric and OcaFilterClassical
objects, both of which have Frequency properties that the Group can control.

13.2. Group operating modes

The specification of OcaGroup defines two operating modes - Hierarchical Mode and Peer-to-Peer Mode.

13.2.1. Hierarchical mode

In Hierarchical Mode, the parameter values in each group shall be accessed via a special additional object
called the Group Controller Object. To change a Group Setpoint, a Controller shall change the
corresponding property value of the Group Controller Object.

There shall be exactly one Group Controller Object per Group. A Group Controller Object shall reside in
the same Device as the Group it controls, but shall not be a Member of that Group.

NOTE When making a Group's Group Controller Object a Member of another Group, implementations
should take care not to create recursive control loops.

13.2.2. Peer-to-Peer mode

In Peer-to-Peer mode, no Group Controller Object shall be used. Instead, the Group Setpoint shall be
changed whenever any Member's setpoint is changed. In essence, all the Group's Members shall behave
as though they were Group Controller Objects.

 - 54 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTE When configuring a peer-to-peer group whose Members may belong to other Groups,
implementations should take care not to create recursive control loops.

13.3. Aggregation and Saturation Rules

An Aggregation Rule is a rule that specifies how Member Setpoint values are computed when the Group
Setpoint changes.

A Saturation Rule is a rule that determines what happens when a Group Setpoint changes in such a way
as to force a Member Setpoint value out of its allowable range.

A Group may have different Aggregation and/or Saturation Rules for each grouped property.

Specific Aggregation and Saturation rules are out of scope of this Standard. Annex E informatively
discusses various forms for such rules and the issues surrounding them.

13.4. Adding and removing Members

When a new Member is added to a Group, its Setpoint value(s) shall be subject to the relevant
Aggregation Rule(s). Specific behaviors shall be implementation-defined.

When a Member is removed from a Group, the effect(s) on its Setpoint value(s) shall be implementation-
defined.

13.5. Overlapping group membership (Informative)

In a working Device, an object may belong to multiple Groups. When a property belongs to an object
which is a member of two or more Groups, that property's setpoint will depend on the cumulative effect
of the corresponding Group Setpoints of all the Groups of which the object is a member.

Because all properties have range limits, it is possible that the cumulative effect of overlapping Group
setpoints might drive a property value out of range. OcaGroup defines an Event named
GroupException that is raised whenever a Group Setpoint change cannot be successfully performed on
one or more Group Members. Controllers may subscribe to this event to detect out-of-range conditions.

13.6. Concurrent changes to Groups (Informative)

Implementations need to prevent malfunctions caused by changes to group membership, aggregation
rules, or saturation rules that occur while group operations are in progress. Methods making such
changes can return the status value Busy when rejecting them. Method status options are defined by the
OcaStatus datatype specified in [AES70-2A].

14. Networking model

14.1. General (Informative)

AES70 defines an abstract model for control and monitoring of Network Interfaces and Network
Applications, referred to as Network Application Control, or NAC. This model is adaptable to a broad
range of use cases.

The scope of NAC includes:

 - 55 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 control and monitoring of Network Interface attributes and performance.

 control and monitoring of Network Application functionality, such as media transport or Device
and service discovery;

In previous versions of AES70, the networking model was described as a part of the media stream
connection management feature set. In this version, the underlying networking elements are factored out
into their own specification - NAC, described in this clause. Media stream connection management
(Clause 15) is specified as a networking application based on the NAC model.

14.2. Architectural layers

NAC defines three architectural layers. From top to bottom, these are:

3. A Network Application Layer containing one or more Network Application Objects. A
Network Application object shall allow control and monitoring of a Network Application.
Network applications are described in 14.3 below.

2. A Network Interface Layer containing one or more Network Interface Objects. A Network
Interface object shall provide control and monitoring of the Network Interfaces that Network
Applications use.

1. A System Layer that represents the network input/output services of the Device’s operational
environment. This layer publishes APIs that perform network input/output operations.
Specifications of this layer are out of AES70’s scope; it is included in NAC for completeness.

14.3. NAC stacks

The term NAC Stack denotes a complete set of NAC networking objects and their linkages for a given
Network Application. A Network Application’s NAC Stack shall define control and monitoring APIs
both for the Network Application itself and for the Network Interface(s) it uses.

In particular, the NAC Stack for a Network Application shall consist of:

1. A Network Application object, possibly accompanied by ancillary application objects.

16. One Network Interface object for each Network Interface the Network Application uses.

17. One or more Network Interface Assignments - binding(s) between the Network Application
object and Network Interface object(s).

18. One or more System I/O Assignments - binding(s) between the Network Interface object(s) and
system I/O API(s).

Figure 9 illustrates a NAC stack in its simplest form.

 - 56 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 9. NAC stack model

A Device shall contain one NAC Stack for each Network Application Object.

In the simplest case, when the Network Application Object uses a single Network Interface, its NAC
Stack shall have one Network Interface Object accordingly. When the application uses multiple Network
Interfaces, multiple Network Interface Objects shall be included, one for each interface.

NOTE Multiple Network Interface objects may be used for redundant streaming, alternative network paths,
network bridging, and other applications of multiple data Networks.

NAC Stacks may share Network Interfaces. Figure 10 shows an example of an AES67 Media Device with
two NAC Stacks that share a single IP Network Interface. A more elaborate example is given in Annex C.

Figure 10. Example of NAC Stacks in an AES67 Media Device

 - 57 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

14.4. NAC Control Classes

Figure 11 shows the NAC Control Class subtree. The notation <x> is a placeholder for an Adaptation
Prefix - see Clause 7.

Figure 11. NAC classes

These classes are summarized as follows. Normative definitions are in [AES70-2A].

 OcaNetworkInterface
the abstract base class for Network Interfaces. Device implementations may define subclasses of it if
needed to accommodate specific types of Network Interfaces.

 OcaNetworkApplication

the generic class for Network Applications. Device implementations may define subclasses of it as
needed to accommodate specific application functionality. All network application classes shall be
subclasses of this class.

 OcaMediaTransportApplication
the subclass of OcaNetworkApplication that shall implement the generic CM4 connection
management mechanism described in Clause 15. Device implementations may define subclasses of it
as needed to accommodate specific application functionality.

In what follows, the term CM4 object means an instance of the class OcaMediaTransportApplication
or of a subclass of it. Statements made regarding the class OcaMediaTransportApplication equally
apply to its possible subclasses, unless explicitly stated otherwise.

It is expected that most, if not all, CM4 applications will need to define subclasses of
OcaMediaTransportApplication.

 - 58 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

It is expected that a Device that implements multiple media transport technologies will define a
specific CM4 class for each transport technology, and instantiate each such class at least once.

A Non-Media Device need not contain any Network Application Objects.

Besides OcaMediaTransportApplication, the CM4 NAC Stack defines a several ancillary classes and
datatypes. Details are in Clause 15.

14.4.1. The property OcaNetworkApplication.Assignments

The property OcaNetworkApplication.Assignments shall contain the list of Network Interface
Assignments. Each list item shall be an OcaNetworkInterfaceAssignment instance. Each such
instance shall have the following functions:

1. Define the binding of a Network Application Object to a Network Interface Object and
provide any additional binding parameters.

2. Define the network Service Advertisements, if any, that the Device shall publish via the
bound Network Interface Object. Service Advertising is detailed in Clause 14.5.

Details of Network Interface Assignments and Service Advertisement descriptors are illustrated in
Figure 12.

Figure 12. OcaNetworkInterfaceAssignment and OcaNetworkAdvertisement

14.4.2. The property OcaNetworkInterface.SystemIoInterfaceName

The string property OcaNetworkInterface.SystemIoInterfaceName identifies the System I/O
Interface associated with the Network Interface Object. Syntax of the string shall be
implementation-specific.

 - 59 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

14.5. Service Advertising

 NAC supports the concept of Service Advertising, by which Network Applications can advertise their
services using various network services and mechanisms.

Types of Service Advertising mechanisms vary from server-based registration to broadcast
announcement. NAC does not define such mechanisms. However, NAC gives applications a flexible
means for specifying the Service Advertising mechanisms to be used and the services to be advertised.

NOTE 1 Application-level Service Advertising mechanisms differ from network name service mechanisms
such as the internet’s DNS, in that the application-level mechanisms deal with application functionality such
as application protocol interfaces or access to data collections, whereas network name services deal with
network hosts and host-related information.

NOTE 2 The distinction between application-level service advertising and network name services is muddied
by the popular DNS-SD protocol, which uses DNS, a network name service mechanism, to register
application-level entities.

Service Advertising parameters are defined specifically for each Network Interface Assignment. A
Network Interface Assignment's Service Advertising parameters, if any, shall be collected in the property
OcaNetworkInterfaceAssignment.Advertisements. This property shall contain a list of descriptors of
datatype OcaNetworkAdvertisement. This property shall be empty when no Service Advertising is
done via the Network Interface Assignment in question.

The datatype OcaNetworkAdvertisement shall identify an advertisement mechanism and shall provide
other parameters the mechanism requires. The form and content of the parameters shall depend on the
type of mechanism and on the application.

Service Advertising elements are illustrated in Figure 12.

Note 3: The NAC Service Advertising mechanism is not intended to address all possible types of advertising
and registration that Adaptations may require. Where a more specific mechanism is involved, an Adaptation
may define the requisite subclass(es) to control it.

14.6. OcaNetworkManager collections

The singleton OcaNetworkManager shall contain:

 A Collection property NetworkInterfaces that shall list all Network Interface Objects in the
Device; and

 A Collection property NetworkApplications that shall list all Network Application Objects in the
Device.

15. IP network interface Adaptation

15.0. General

NAC allows Adaptations for a wide range of data network types. At present, IP networks are the most
common type. This Standard specifies an Adaptation for IP networks (IP Adaptation). This Adaptation
covers both IP version 4 and IP version 6 networks.

 - 60 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

15.1. Structure

The IP Adaptation specifies the value of Adaptation-related properties in OcaNetworkInterface. These
properties and their values are shown in Table 7.

Table 7. OcaNetworkInterface property values for IP

Content Element Value

Adaptation identifier OcaAdaptationIdentifier
 AdaptationIdentifier

“OcaIP4” or "OcaIP6"

IP network settings
OcaBlob TargetNetworkSettings
and
OcaBlob ActiveNetworkSettings

instances of the datatype
OcaIP4NetworkSettings or
OcaIP6NetworkSettings

IP network settings are defined normatively in the model IP Adaptation in [AES70-2A].

15.2. Examples

Two typical NAC stacks for Network Applications that use IP networks are given in Annex C, Clauses
C.2.1 and C.2.2. Clause C.2.1 omits Service Advertising, Clause C.2.2 includes it.

16. Media transport application model

16.1. General

Introduced in Clause 14.4 Above, CM4, the generic AES70 media transport application model, consists of
three mechanisms:

 Network Interface Assignment - see Clause 14.3.
 Media Stream Endpoint Control - see Clause 16.4.
 Media Transport Session Control - see Clause 16.5.

16.1.1. Older mechanisms (Informative)

Older AES70 media transport control revisions are CM2 (in AES70-2015) and CM3 (in AES70-2018). For
normative specifications of those versions, refer to the respective editions of AES70. Further informative
historical details of AES70 media transport control are in Annex D.

Where necessary, a Device may implement CM2, CM3, and/or CM4 connection management mechanisms
at the same time. However, such combinations are not recommended.

 - 61 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

16.2. CM4 classes

The Control Classes and key datatypes defined and/or used by CM4 are illustrated in Figure 13. The
diagram shows CM4 classes and their relations to the NAC model’s Application and Network Interface
Layers. Normative specifications of all CM4 classes and datatypes are in [AES70-2A].

Figure 13. CM4 classes and key datatypes

 - 62 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 8 lists the CM4 classes, organized by CM4 mechanism.

Table 8. CM4 classes by mechanism

Name Type Function(s) Clause

Media stream Endpoint Control mechanism

OcaMediaTransport
Application

Network
Application
class

Specifies the AES70 control interface for Media Stream
transport. May be subclassed. 16.3

OcaMediaStreamEndpoint Datatype Describes an individual Media Stream Endpoint. 16.4.2

OcaMediaStreamMode Datatype
Specifies Media Stream Mode: the coding and format
attributes of a Media Stream. 16.4.2.4.2

OcaMediaStreamMode
Capability Datatype

Represents a set of Media Stream Modes. Used to indicate
what Media Stream Modes a Media Stream Endpoint can
handle.

16.4.2.4.3

OcaMediaClock3 Agent class Specifies the AES70 control interface for a media clock. 17

OcaTimeSource Agent class Specifies the AES70 control interface for a time reference. 17

Media Transport Session control mechanism

OcaMedia
TransportSessionAgent Agent class

Specifies the AES70 control interface for Media Transport
Sessions. 16.5

OcaMedia
TransportSession Datatype Describes a Media Transport Session. 16.5

OcaMediaTransport
Connection Datatype

Describes a Media Stream Connection within a Media
Transport Session.

16.5

16.3. Ports

An OcaMediaTransportApplication object shall have a Container of Ports. Each Port shall be described
by an instance of the datatype OcaPort (see Clause 10.7.1). The Container shall reside in the property
OcaMediaTransportApplication.Ports. Each Port shall represent the connection of a single signal channel
of a network stream to one or more Signal Flows inside the Device.

16.3.1. Port clocking and sampling rate conversion

For any OcaMediaTransportApplication Port, the property
OcaMediaTransportApplication.PortClockMap may be used to specify:

1. The Object Number of an associated OcaMediaClock3 object;

2. The type of sampling rate converter, if any, associated with the port. Available types are none,
synchronous, and asynchronous.

The referenced OcaMediaClock3 shall operate as follows:

 For an Input Port, the referenced OcaMediaClock3 shall determine the sampling frequency and
phase of the signal received by the Port from the connected Signal Path.

 - 63 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 For an Output Port, the referenced OcaMediaClock3 shall determine the sampling frequency
and phase of the signal delivered by the Port to connected Device Signal Path(s).

See [AES70-2H] for more details.

16.4. Media Stream Endpoint control mechanism

16.4.1. General

In this mechanism, an OcaMediaTransportApplication object shall allow Controllers to:

1. Configure the set of Media Stream Endpoints used (see Clause 16.4.2).

2. Configure each Media Stream Endpoint's Network Interface Assignments (see Clause 14.3).

3. Configure each Media Stream Endpoint's stream mode capabilities (see Clause 16.4.2.4.3).

4. Start up, pause, and shut down Media Stream Connections.

5. Track Media Stream Endpoint status.

16.4.2. Media Stream Endpoints

A Media Stream Endpoint, or just Endpoint in the remainder of this clause, shall be described by an
instance of the datatype class OcaMediaStreamEndpoint. An Endpoint that receives a stream is called an
Input Endpoint, while one that transmits a stream is called an Output Endpoint.

The OcaMediaStreamEndpoint instances that belong to an OcaMediaTransportApplication object shall
be collected in that object's Endpoints property.

16.4.2.1. Endpoint Network Interface Assignments

Every Endpoint shall be assigned to one or more of the Network Interface Assignments that are collected
by the owning OcaMediaTransportApplication object.

16.4.2.2. Media Stream Connections and signal routing

Every Endpoint shall be connected to zero or one Media Stream(s). Multichannel streams shall be
supported. The maximum number of signal channels an Endpoint can support shall be a read-only
property of the OcaMediaTransportApplication object to which the Endpoint belongs.

16.4.2.3. Channel map

Each Endpoint shall be mapped to one or more Input/Output Ports of the
OcaMediaTransportApplication object to which it belongs. An Endpoint's set of such mappings is
specified by the property OcaMediaStreamEndpoint.ChannelMap.

Mapping rules differ for Input and Output Endpoints as follows:

 Each channel of an Input Endpoint shall be mapped to none, one, or multiple Output Ports of the
OcaMediaTransportApplication object.

 Each channel of an Output Endpoint shall be mapped to one Input Port at most;

 - 64 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Thus, a signal in an outgoing Media Stream channel can arise from only one internal Signal Path, whereas
a signal from an incoming Media Stream channel can be dispatched to any number of internal Signal
Paths.

16.4.2.4. Media stream formatting and encoding

16.4.2.4.1. General

The AES70 Core Specification shall place no restrictions on Media Stream formats, signal sampling rates,
signal encodings, or other media data attributes.

16.4.2.4.2. Media Stream Mode

Properties of the datatype OcaMediaStreamMode shall store the set of Media Stream parameters needed
for establishing connections and transferring media signals between Endpoints. When an Endpoint has a
Media Stream Connection, an accordingly populated instance of OcaMediaStreamMode shall be stored
in the CurrentStreamMode property of the respective OcaMediaStreamEndpoint instance.

The properties of OcaMediaStreamMode shall be:

1. FrameFormat The transport container format used by the Media Stream.

2. EncodingType Encoding scheme used to represent the media signal in Media Stream data.
This parameter shall cover both single-sample and frame-based encoding
types, as well as signal compression algorithms, when used.

3. SamplingRate Number of media signal samples per second.

4. ChannelCount Number of separate signal channels multiplexed into the Media Stream. This
parameter shall not reflect embedded virtual channels, obtained by means of
matrix or parametric coding, or other similar methods .

5. PacketTime Duration of the media signal fragment carried in a each network packet.

16.4.2.4.3. Media stream mode capabilities

The datatype OcaMediaStreamModeCapability shall define a set of Media Stream Modes.

The property OcaMediaTransportApplication.MediaStreamModeCapabilities shall collect all
OcaMediaStreamModeCapability instances supported by all Endpoints of the given
OcaMediaTransportApplication object.

The property OcaMediaStreamEndpoint.StreamModeCapabilityIDs shall list the indices of
OcaMediaStreamModeCapability instances the particular Endpoint supports.

16.4.2.5. Alignment Level

Different Devices may operate at different digital Alignment Levels, both internally and on external
interfaces. When a Media Stream flows between Devices of differing Alignment Levels, level
compensation is needed to prevent a gain or loss in the apparent signal level. To allow Controllers to
manage such compensation, CM4 shall provide parameters that allow Controllers to learn the digital
Alignment Levels of Devices being connected, and to adjust gain to compensate for those differences.

 - 65 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

In particular, the OcaMediaStreamEndpoint datatype shall include a property AlignmentLevel that
specifies the digital Alignment Level for signals flowing through the given OcaMediaStreamEndpoint
instance.

The OcaMediaTransportApplication class shall specify minimum and maximum permissible values for
AlignmentLevel in the property AlignmentLevelLimits.

Alignment Level values shall be RMS levels expressed in dBFS, where dbFS is defined by [AES17]. For
fixed-point signal encodings, full-scale amplitude shall be the maximum sample value. For floating-point
signal encodings, full-scale amplitude shall be the floating-point value 1.0.

NOTE The Alignment Level of an Endpoint may not necessarily be the same as the Alignment Level of the
Device’s internal signal processing, and in a given Device may vary from Endpoint to Endpoint. In AES70,
the Alignment Level is defined only for Endpoints. Internal digital scaling details are out of scope.

16.5. The Media Transport Session Management mechanism

See the definitions of Session (definition 69) and Media Transport Session Management (definition 46).
Essentially, a Media Transport Session is a mechanism for controlling and grouping Media Stream
Connections.

CM4 provides a base class OcaMediaTransportSessionAgent for managing Media Transport Sessions.
In practice, Media Transport Session Management functions vary widely from use case to use case, and it
is expected that Adaptations will define subclasses of OcaMediaTransportSessionAgent to address
specific requirements.

OcaMediaTransportSessionAgent shall provide methods for creating, deleting, controlling, and
monitoring Media Transport Sessions.

As illustrated in Figure 13, OcaMediaTransportSessionAgent shall collect a set of
OcaMediaTransportSession datatype instances. There shall be one such instance for every Media
Transport Session being managed.

Furthermore, each OcaMediaTransportSession datatype instance shall collect a set of
OcaMediaTransportSessionConnection datatype instances, each of which shall describe a Media Stream
Connection (definition 41). There shall be one instance of OcaMediaTransportSessionConnection for
each of the Media Transport Session's Media Stream Connections.

Further details are Adaptation-specific.
17. Time

17.1. Physical time

17.1.1. AES70 Epoch

AES70’s epoch shall be the PTP epoch as defined in [IEEE-1588], namely 1970-01-01 00:00:00 TAI, where
TAI is international Atomic Time {Wiki-002}.

NOTE The PTP epoch is equal to the SMPTE epoch defined in [SMPTE-2059-1].

 - 66 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

17.1.2. Format

For absolute physical time values, AES70 object properties use the standard PTP format defined in
[IEEE-1588]. This format is as follows:

 48 bits: seconds since the AES70 Epoch as defined in Clause 17.1.1
 32 bits: nanoseconds since the most recent second.

For physical time offsets, AES70 object properties shall use a datatype consisting of a standard PTP value
and a sign flag, to indicate whether the offset is positive or negative.

Normative definitions of these formats are in [AES70-2A].

17.1.3. UTC time and the NTP time format

Previous versions of AES70 used UTC time in the NTP time format for certain time-related properties. In
the version defined here, those properties are deprecated. In this version, support of UTC time shall be
optional. UTC time should not be used for new AES70-compliant products.

17.2. Time references

A time reference used by a Device shall be represented in AES70 by an object of class OcaTimeSource.
Properties of this class shall:
 Identify the time reference represented.

 Specify values of parameters (if any) of the time reference.

 Identify the time delivery mechanism, i.e. the means of communicating reference time values to
the Device.

 Specify values of parameters (if any) of the time delivery mechanism.

Time references may be outside the Device (e.g. GPS) or inside the Device (e.g. an internal clock). Time
delivery mechanisms may be network protocols (e.g. IEEE 1588), point-to-point connections (e.g. AES11),
or internal Device signal paths.

OcaTimeSource is defined normatively in [AES70-2A].

17.3. Media position

Certain AES70 actions may be scheduled to occur at a given point relative to the start of a Media Stream.
AES70 shall allow this point to be identified either in nanoseconds or samples from the beginning of the
stream.

17.4. OcaWhen

OcaWhen shall be a datatype that expresses an absolute or relative physical time. OcaWhen is used by
AES70 actions that may be initiated either at a given absolute physical time or a given relative physical
time referenced to a use-case-specific epoch, for example, a specific time of day, or a particular moment in
a Media Stream.

 - 67 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

18. Physical position coordinate systems

AES70 shall support various coordinate systems for setting and retrieving physical positions. The
following rules and definitions apply to all of these coordinate systems:

 All distance values shall be in meters.

 All angle values shall be in degrees.

 The situation of a coordinate system means its position and orientation with respect to real-
world coordinates. In some cases, situation is application-dependent and outside the scope of the
standard. In other cases, the coordinate system shall have a standard definition.

Coordinate systems defined by AES70 are summarized in Table 9, and further described in the text
following.

Table 9. Physical Position Coordinate Systems

Name Description

Robotic Six-axis position and rotation per [ISO-9787].

ItuObjectBasedPolar Object-based audio per [ITU-R-BS.2076-2]. Polar version.

ItuObjectBasedCartesian Object-based audio per [ITU-R-BS.2076-2]. Cartesian version.

ItuSceneBasedPolar Scene-based audio per [ITU-R-BS.2076-2]. Polar version.

ItuSceneBasedCartesian Scene-based audio per [ITU-R-BS.2076-2]. Cartesian version.

Navigation Standard earth navigation coordinates per [WGS-84].

Table 10. Position coordinate system attributes.
See text below for definitions of symbols.

Name Coordinates See Clause Situation

Robotic X, Y, Z, rX, rY, rZ 18.1 application-dependent

ItuObjectBasedPolar ϕ, θ, R, Scale 18.2.1 application-dependent

ItuObjectBasedCartesian X, Y, Z, Scale 18.2.2 application-dependent

ItuSceneBasedPolar ϕ, θ, R, Scale 18.2.3 application-dependent

ItuSceneBasedCartesian X, Y, Z, Scale 18.2.4 application-dependent

Navigation
Latitude, Longitude,
Altitude

18.3 fixed to WGS-84 origin

18.1. Robotic coordinates

Robotic coordinates shall be six-axis robotic coordinates of the form (X, Y, Z, rX, rY, rZ), where rX, rY,
and rZ shall be rotation of the physical object around the given axis - X, Y, or Z.

 - 68 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

When viewed from the positive ends of the respective axes, rX, rY, and rZ shall increase for anticlockwise
rotation.

The X-axis shall point in the rZ=0° direction, and the Y-axis shall point in the rZ=+90° direction.

Situation shall be application-dependent, and therefore not specified by this standard.

Normative specifications are in [ISO-9787].

18.2. ITU coordinates

ITU coordinates are for capturing, processing, and playback of immersive audio programming. There are
four different ITU coordinate systems, as described next.

18.2.1. ITU object-based polar coordinates

ItuObjectBasedPolar coordinates shall be object-based polar coordinates for audio elements, as defined
by [ITU-R-BS.2076-2].

Coordinate values shall be of the form (ϕ, θ, R, Scale) where (ϕ, θ, R) shall define a point of a unit
sphere, and Scale shall be the scale factor to scale the point to an absolute position, and

 ϕ shall be azimuth: - angle in the horizontal plane with ϕ = 0° pointing from the origin toward the
front center position.

 θ shall be elevation - angle in the vertical plane with θ = 0° pointing from the origin toward
the front center position.

 R shall be radius: distance of the point from the center of the unit sphere; thus 0 ≤ R ≤ 1.

Normative specifications are in [ITU-R-BS.2076-2].

18.2.2. ITU object-based Cartesian coordinates

ItuObjectBasedCartesian coordinates shall be object-based Cartesian coordinates for audio elements, as
defined by [ITU-R-BS.2076-2].

Coordinate values shall be of the form (X, Y, Z, Scale) where (X, Y, Z) shall define a point of a unit cube,
and Scale shall be the scale factor to scale the point to an absolute position.

Normative specifications are in [ITU-R-BS.2076-2].

18.2.3. ITU scene-based polar coordinates

ItuSceneBasedPolar coordinates shall be scene-based polar coordinates for audio elements, as defined by
ITU-1(8)].

Coordinate values shall be of the form (ϕ, θ, R, Scale) where (ϕ, θ, R) shall define a point of a unit
sphere, and Scale shall be the scale factor to scale the point to an absolute position, and

 ϕ shall be azimuth - angle in the horizontal plane with ϕ = 0° pointing from the origin toward the
front center position.

 - 69 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 θ shall be elevation - angle in the vertical plane with θ = 0° pointing from the origin in the
direction the listener (at the origin) considers to be vertical.

 R shall be radius: distance of the point from the center of the unit sphere; thus 0 ≤ R ≤ 1.

Normative specifications are in [ITU-R-BS.2076-2].

18.2.4. ITU scene-based Cartesian coordinates

ItuSceneBasedCartesian coordinates shall be scene-based Cartesian coordinates for audio elements, as
defined by [ITU-R-BS.2076-2].

Coordinate values shall be of the form (X, Y, Z, Scale) where (X, Y, Z) shall define a point of a unit cube,
and Scale shall be the scale factor to scale the point to an absolute position.

Normative specifications are in [ITU-R-BS.2076-2].

18.3. Navigation coordinates

Navigation coordinates shall be standard world navigation coordinates, as used in conventional Earth
maps and provided by satellite positioning system receivers and other navigation equipment, and as
standardized in [WGS-84].

Coordinate values shall be {Longitude, Latitude, Altitude}, as defined by [WGS-84].

Situation shall be as specified in the [WGS-84] coordinate system, which places the origin at the center of
mass of the Earth.

19. Datasets - general

A Dataset is a unit of data stored in a Device.

Datasets shall be controlled by AES70 objects of class OcaDataset or of subclasses of OcaDataset.
Datasets may be used for various purposes, both standard and proprietary.

A Controller shall be able to retrieve the content of a Dataset and, depending on Device implementation,
may also be able to create, update, and/or delete Datasets.

19.1. Dataset applications defined by AES70

AES70 defines specific Dataset applications as shown in Table 11. In addition to these applications,
AES70 users are free to define additional ones.

 - 70 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Table 11. Dataset applications defined by AES70

Feature Set Explanation Related classes Clause

Logging
Storage and retrieval of Device-
generated logs

OcaLog 20

Stored Parameter Values
Storage, retrieval, and use of Device
parameter sets; sometimes called
“presets” or “Patches”

OcaDataset
OcaBlock
OcaDeviceManager

21

Media Volumes Media file upload, download,
recording, and playback

OcaDataset
OcaMediaRecorderPlayer 22

Tasks
Storage, retrieval, and use of stored
execution sequences, e.g. execution
scripts.

OcaProgram
OcaCommandSet 23

NOTE The Stored Parameter feature set listed in Table 11 obsoletes the OcaLibrary feature set defined in
previous versions of AES70.

19.2. Dataset name

Each Dataset shall have a name, which may be any UTF-8 text string. Dataset names need not be unique,
because a Dataset is uniquely identified by its Object Number, not its name.

19.3. Dataset type

Each Dataset shall have a MIME Media Type described by a MIME Media content-type string stored in
the type property of OcaDataset. The format of MIME Media content-type strings is defined normatively
in [RFC 2045(5.1)], and summarized in Annex F.

For Datasets, MIME content subtype values beginning with 'x-oca-' shall be reserved for use by AES70.

AES70 defines the standard Dataset types listed in Table 12. Some of these shall be stored by
OcaDataset, while others shall be stored by child classes of OcaDataset. Table 12 shows which classes
shall store which types. Applications may define and use other types as necessary - see Clause 19.8.

Table 12. Standard AES70 Dataset types

Dataset application Dataset type
Dataset type identifier

(MIME Media Type)
Dataset class

Logging Log application/x-oca-log OcaLog

Stored parameter
values

ParamDataset application/x-oca-param OcaDataset

PatchDataset application/x-oca-patch OcaDataset

Media volumes Media Volume
application-dependent; value
should describe the content of the
media volume

OcaDataset

Tasks
Program application/x-oca-program OcaProgram

Commandset application/x-oca-commandset OcaCommandSet

(nonspecific binary file) Binary application/octet-stream
OcaDataset or
custom subclass

 - 71 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Implementations of these Dataset types may append MIME parameters to the given Dataset type
identifiers as needed.

19.4. Class OcaDataset

OcaDataset shall be a class whose instances represent Datasets. Each instance of OcaDataset or a
subclass of OcaDataset shall represent exactly one Dataset. Such instances are called Dataset Objects.

OcaDataset shall contain methods for exchanging Dataset content with Controllers. These methods shall
support piecewise access to the data, so that large Datasets may be accessed using feasible protocol data
unit and program buffer sizes.

Datasets may support various types of read, write, and read-write access.

Like other Control Classes, each OcaDataset object shall:

 Have a ClassID (Clause 6.2.2.5);
 Have a unique Object Number (Clause 6.2.3). Dataset objects' Object Numbers shall be allocated

within the same numbering space as all the other Object Numbers in the Device, and will
therefore be unique within that Device;

 Be a Member of a Block(Clause 9).

Normative details of OcaDataset are in [AES70-2A].

19.5. OcaBlock features for Datasets

OcaBlock methods (Clause 9) shall allow Controllers to:

 Enumerate Datasets in the Block, and optionally in contained Blocks;
 Search for Datasets in the Block and optionally in contained Blocks;
 (Optionally) create and delete Datasets in the Block.

19.6. Dataset access concurrency management

Dataset access concurrency management, i.e. the management of simultaneous Dataset access by multiple
Controllers, shall be accomplished via the normal AES70 locking mechanism defined in OcaRoot, and
specified in Clause 26.

19.7. Dataset creation (Informative)

AES70 defines various ways of creating and storing Datasets in a Device. Such ways include, but are not
limited to:

 The Dataset may be installed in the Device at time of manufacture;
 The Dataset may be installed in the Device as part of a manual or automatic configuration

sequence that may or may not use AES70;
 The Dataset may be generated programmatically by the Device, either automatically or in

response to commands from a Controller.

Datasets may be populated either by Device activities (e.g. logs or recording of Media Streams) or by data
transfers from Controllers.

 - 72 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

19.8. User-defined Dataset types

At its simplest, a user-defined Dataset application may be defined merely by creating a Dataset with an
appropriate MIME media type, then employing the standard OcaDataset methods and procedures to
manage and use it.

More advanced custom Dataset applications may elect to create subclasses of OcaDataset, to support the
particular functions required.

Applications that store media data in Datasets will need to use a Worker class -
OcaMediaRecorderPlayer (see Clause 22.1) or a similar proprietary class - to provide the required signal
handling functionality.

User-defined Datasets may be of any MIME media type except those beginning with
“application/x-oca-“, which are reserved for AES70 use.

20. Logging Datasets

20.1. Concept

An OCA Log is a Dataset that contains Device log data that Controllers can retrieve and, optionally,
modify or delete.

OCA Logs shall be controlled by instances of OcaLog, a subclass of OcaDataset. Each instance of this
class shall represent exactly one OCA Log.

Log Datasets shall have type identifiers of the form:

application/x-oca-log

Implementations may append the MIME parameter (MIME parameters, see Clause 19.3) logtype to
further indicate the type of Log. The value of this parameter shall conform to the syntax rules in 19.3, but
shall otherwise be implementation-dependent. For example:

application/x-oca-log; logtype=GUI
application/x-oca-log; logtype=NETWORK

AES70 defines no particular Log formats. Such formats are implementation-dependent.

20.2. Log Retrieval

OcaLog shall provide a set of methods that Controllers may use to retrieve Log entries from Devices.
Normative specifications of these methods are in [AES70-2A]. Explanations of use and examples are in
[AES70-2D].

Log retrieval shall operate according to a Session concept. In the following, Log Retrieval Session means
a sequence of command operations that retrieves a set of Log records that obey a given filtering criterion.

 - 73 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

In the Log Retrieval Session sequence described below, the methods cited are members of OcaLog. The
steps are:

1. The Controller opens a log retrieval session using OpenRetrievalSession(...).
OpenRetrievalSession(...) allows specification of a filter to determine which subsets of the
overall Log will be retrieved.

19. The Controller executes one or more Log retrieval operations using RetrieveLogRecords(...).
RetrieveLogRecords(...) contains mechanisms for managing large retrieval results that may
exceed available buffer sizes.

20. When retrieval is complete, the Controller closes the retrieval operation using
CloseRetrievalSession(...).

More details and examples of these mechanisms are given in [AES70-2D].

21. Stored parameter value Datasets

Dataset types application/x-oca-param and application/x-oca-patch shall identify parameter value
storage Datasets, whose general purpose is to store and restore Device parameter settings values.

A Dataset of type application/x-oca-param is known as a ParamDataset. A Dataset of type
application/x-oca-patch is known as a PatchDataset.

Note 1: This clause obsoletes the parameter storage mechanism based on the now-deprecated OcaLibrary

feature set defined in AES70-2018.

Note 2: Stored parameter sets have historically been given such names as "preset", "patch", "memory", or
"scene".

21.1. ParamDatasets

A ParamDataset shall be a Dataset that stores property values for a Block (Clause 9). A Block to which a
ParamDataset applies is called a Target Block of the ParamDataset.

The act of installing a ParamDataset’s values into a Target Block is termed applying the ParamDataset to
the Block. The OcaBlock method ApplyParamDataset(...) performs this function.

If a ParamDataset’s Target Block is reusable (Clause 11.4), the ParamDataset may be applied to any Block
with the same GlobalType as the Target Block. The Reusable Block’s GlobalType value is called the
ParamDataset’s Target Blocktype.

Read-only properties (for example, ClassID) shall not be stored by ParamDatasets.

A ParamDataset need not contain values for all the properties in its Target Block. Applying a
ParamDataset to a Block shall change only the property values stored in that ParamDataset, and shall
leave other properties unchanged.

 - 74 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

AES70 shall allow various ways of creating and updating ParamDatasets in a Device. These ways
include, but are not limited to:

1. Any of the Dataset creation options listed informatively in Clause 19.7; or

2. The Controller may request that an OcaBlock object in the Device save all its property values as a
ParamDataset. This "snapshot" action shall capture the values of parameters inside the Block and
save them as a ParamDataset in the Device. The OcaBlock method
StoreCurrentParamDataset(...) shall perform this function.

The particular content formats of ParamDatasets shall be implementation-dependent and are outside the
scope of this standard. The particular set of parameters stored in a ParamDataset shall be
implementation-dependent, and may even include internal parameters not directly accessible via AES70
Control Objects.

A ParamDataset may contain parameters of the subtree of its contained Blocks, if implementations so
choose.

21.1.1. Assignments

A ParamDataset Assignment is the application of a specific ParamDataset to a specific Block. Because a
given ParamDataset may be applied to multiple Blocks of the same Target Blocktype, a single
ParamDataset may be involved in multiple ParamDataset Assignments.

The formats of ParamDataset Assignments shall be Device-specific and are outside the scope of this
standard.

EXAMPLE: Suppose a mixing console defined a Blocktype named InChannel to represent one input
channel. Thus, a 32-input console would have 32 instances of this class. The console could define one or
more channel ParamDatasets for InChannel. Any of these ParamDatasets could be assigned to any
instance of InChannel.

21.2. PatchDatasets

A PatchDataset shall be a set of ParamDataset Assignments. The act of executing all the ParamDataset
Assignments in a PatchDataset is termed applying the PatchDataset to the Device. The
OcaDeviceManager method ApplyPatch(...) shall perform this function.

NOTE The term “patch” inherits from the similar concept in the MIDI device control protocol. A “MIDI patch”
is a set of MIDI commands that configures a device into a particular state.

The formats of PatchDatasets shall be Device-specific and are outside the scope of this standard.

22. Media Volume Datasets

A Media Volume is a Dataset that contains media data the Device can play and/or record. Each Media
Volume shall be represented by an instance of OcaDataset.

The standard type identifier for Media Volumes shall be application/x-oca-media. However, other
types may be used where appropriate. For example, applications may use common media types such as
audio/basic or video/MPEG.

 - 75 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The particular formats of Media Volumes shall be Device-specific, and are outside the scope of this
standard.

OcaDataset methods shall provide for the handling of Media Volumes as unstructured binary data.
Controllers may use such methods for bulk retrieval and, if implemented, creation, deletion, and/or bulk
updating of Media Volumes.

Media Volume playback and recording functions shall be provided by the OcaMediaRecorderPlayer
class, described next.

22.1. Class OcaMediaRecorderPlayer

OcaMediaRecorderPlayer shall be a Worker class (Clause 8.4.2) that shall provide media playout,
positioning, and, optionally, recording functions for Media Volumes.

NOTE OcaMediaRecorderPlayer is a Worker, and so can have one or more Ports (Clause 10.7.1). These
Ports shall allow routing of media signals between Media Volumes and Device signal paths.

For normative details, refer to [AES70-2A].

23. Task feature set

23.1. General

The AES70 Task Feature Set offers ways for Controllers to store predefined executable Datasets
(Executables) in Devices, and to cause their execution when required.

In AES70, a Task is an execution resource in the Device capable of running a single Executable at a time.
The Task Feature Set provides ways of controlling and scheduling Task operations.

Normative definitions of Task Feature Set classes are in [AES70-2A]. Informative programming notes for
the Task Feature Set are in [AES70-2H].

Task Feature Set classes and key datatypes are illustrated in Figure 14.

Figure 14. Task Feature Set classes

 - 76 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Two kinds of executables are supported - Programs, which define arbitrary programmatic functions in
implementation-dependent formats, and Commandsets, which define sequences of AES70 commands.

 In what follows, the noun Executable means Program or Commandset.

23.2. Program Datasets

A Program shall be an executable programmatic action or sequence that may be run in a Device.

Each Program shall be a Dataset controlled by an instance of the OcaProgram subclass of OcaDataset.
Each OcaProgram instance shall control exactly one Program.

The content of Programs is Device-specific and is outside the scope of AES70. AES70 does not define
Device programming or scripting mechanisms.

23.3. Commandset Datasets

In practice, it will sometimes be useful for Controllers to store a predefined command sequence in a
Device, and execute it at a subsequent time. The AES70 Commandset feature offers this functionality.

A Commandset shall be a special case of a Program . Each Commandset shall be a Dataset controlled by
an instance of the OcaCommandSet subclass of OcaProgram. Each OcaCommandSet instance shall
control exactly one Commandset.

In the Commandset context:

 The term Command means a data structure that describes a particular call to a particular method
of a particular AES70 object.

 A Commandset shall be an ordered Container of Commands.
 To execute a Command means to invoke the method the Command describes.
 To execute a Commandset means to execute all the Commandset's commands.

Each OcaCommandSet instance shall provide methods for Controllers to populate and manage the
Commands in its Commandset.

23.4. Task Agent

Task Agents shall be control and monitoring interfaces that manage Execution of Programs, represented
by OcaProgram objects (Clause 23.2) or Commandsets, represented by OcaCommandSet objects (Clause
23.3). A particular Task Agent could manage the Execution of Programs, Commandsets, or both, as
determined by the implementation.

A Task Agent shall Execute only one Executable at a time. In Dynamic Blocks, a Controller can change the
total number of Executables that can be Executed simultaneously by creating or deleting Task Agents.

To run a given Executable, an instance of OcaTaskAgent shall be given all the following parameters:

 the Executable’s Object Number
 any Execution parameters required
 the Run Mode (see Clause 23.4.1)

 - 77 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Following the specification of these parameters, the Executable can be started, i.e. commanded to
commence execution.

23.4.1. Run mode

The Run Mode property of an Executable shall specify:

1. The Execution order of its steps or Commands. The choice is (a) sequential or (b) arbitrary.
Implementation of (b) is optional.

2. The handling of Execution errors. The choices are (a) to abort immediately, or (b) undo (“roll
back”) changes made up to the point of error. Implementation of (b) is optional.

23.5. Task scheduler

Execution of a particular Executable may be scheduled for a future time using a Task Scheduler, which
shall be an instance of the Agent class OcaTaskScheduler.

A Task Scheduler shall maintain a queue of Executables to be run in the future, and shall launch them at
designated times or immediately, on request. The Execution action that a queue item defines is called a
Job, and the Task Scheduler’s execution queue is called a Job Queue.

Each Task Scheduler shall maintain a list of Task Agents to which it can dispatch Jobs.

NOTE Multiple Schedulers can be instantiated when it is necessary to collect OcaTaskAgent objects into
separate scheduling groups. For example, a Device might maintain one Task Scheduler for Task Agents
capable of executing Programs, and a separate Task Scheduler for Task Agents capable of executing
Commandsets.

 - 78 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

24. Counters and Countersets

AES70 defines a generic Counter mechanism that is employed in several places in [AES70-2A], and may
be used by implementers as required. A Counter is a data element that records a count. The mechanism
is based on the idea of a Counterset, which is a Container of Counters.

The elements of this mechanism are shown in Table 13. Normative specifications of these elements are in
[AES70-2A{Counter Datatypes)].

Table 13. Counter Datatypes and Agents

Name Type Function(s)

OcaCounterSet Datatype A list of Counters

OcaCounter Datatype
A Counter with a name, an OcaUint64 value, and other
related parameters.

OcaCounterNotifier Agent

An object that may be attached to a Counter that shall
monitor the changes of the Counter and raise
CounterChange events based on given monitoring
criteria.

OcaCounterSetAgent Agent

An Agent that shall contain a Counterset and provide
methods to access the values of its Counters.

NOTE this Agent may be freely instantiated in a Device
whenever counting functions are required and where
applicable Countersets are not otherwise defined.

A Counterset shall be an instance of OcaCounterSet. A Counter shall be an instance of OcaCounter. A
Notifier shall be an instance of OcaCounterNotifier. Their relationships are illustrated in Figure 15.

Figure 15. Counterset, Counter(s), and Notifier(s)

24.1. Identification

Every Counterset shall have an ID that is unique within the Device, The datatype of this ID shall be
OcaBlob, which designates an opaque binary value that may be freely chosen by the implementation.

Every Counter shall have a 16-bit unsigned integer index that is unique within its Counterset.

Every Notifier shall be uniquely identified by its Object Number.

 - 79 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

24.2. Relationships of counters to notifiers

Each Counterset shall contain one or more Counters. Each Counter shall be linked to zero or more
Notifiers. The specific set of Notifiers within a Device, and the linkages between those Notifiers and the
Counters they monitor are up to the implementation.

24.3. Class design pattern

In [AES70-2A], Countersets and related elements are coded according to a specific design pattern
specified in [AES70-2(Class structure design patterns)].

25. Security

The aim of AES70 is to support networks capable of operating at levels of security sufficient to satisfy:
 international regulations governing emergency evacuation systems.
 commercial and government data security requirements.
 public media and live performance data security requirements.

AES70 security depends on the communications protocol being used.

For example, in networks using TCP/IP communications and the OCP.1 protocol [AES70-3], security of
the control data shall use the TCP/IP family's Transport Layer Security (TLS) protocol to provide
authentication and encryption - see [AES70-3] for details.

A network may operate with a mix of secure and insecure Devices.

NOTE 1 In principle, networks that mix secure and insecure Devices are insecure.

NOTE 2 The AES70 specification excludes access control. Access control defines which Devices, objects,
object features, and object value ranges can be affected by each user. If access control is required, then it
may be implemented in the application, and AES70 security may be used to secure the implementation.

26. Concurrency control

AES70 shall support applications that use multiple simultaneous Controllers, and in which a particular
object may receive directives from more than one Controller.

In such applications, certain application control processes require the exchange of more than one control
message. Therefore, the potential for a race condition exists. To prevent race conditions, Devices shall
support mutual exclusion via a simple object-locking mechanism with the elements listed below.

An AES70 Lock is a mutual exclusion ("mutex") mechanism designed to prevent some or all access to the
object by anyone other than the Controller that sets the lock (the Lockholder).

AES70 shall support two levels of Lock, as follows:

1. NoReadWrite Locks, which prevent all access to the object by non-Lockholders;
2. NoWrite Locks, which prevent non-Lockholders from modifying object data, but allow them to

retrieve it.

 - 80 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

The Lock mechanism shall be defined in the OcaRoot class, and shall therefore shall be inherited by every
other AES70 class. However, non-lockable objects may be defined, if desired, as described in the rules
below.

The complete set of AES70 locking rules is as follows:

1. The Lock mechanism shall be defined for every AES70 object.

2. An object may be implemented as Lockable or Nonlockable. A Nonlockable object shall
return a not-implemented status (via a response message - see Clause 6.3) in response to all
locking-related commands.

3. The lockability or an object shall be indicated by the value of its Lockable property.
Lockable is a property of OcaRoot, and is therefore inherited by all Control Classes.

4. A locked object may be locked NoReadWrite or locked NoWrite, but not both.

5. An object locked NoReadWrite shall only be readable or writable by the Lockholder.

6. An object locked NoWrite may be read by any Controller but only written by the Lockholder.

7. A lockable object shall be locked by at most one Lockholder at a time.

8. A Lockholder may upgrade its lock from NoWrite to NoReadWrite, or downgrade its lock
from NoReadWrite to NoWrite ; Non-Lockholders shall not be able to do this.

9. Controller-to-Device AES70 communication should be continuously monitored (Clause
27.1.1). When a Controller's communication with a Device fails for any reason (including
Device Reset), the Device shall automatically remove all Locks set by that Controller.

10. It shall be possible to lock an entire Device by locking its Device Manager object.

11. When locking the Device Manager, the lock status of all individual objects in the Device shall
be preserved; when the Device Manager lock is removed, any preexisting individual locks
shall remain.

12. A Controller shall not be able to delete a locked object unless that Controller is the
Lockholder.

26.1. OcaLockManager

The default Lock methods defined in OcaRoot have no waiting capability - if a lock cannot be granted
immediately, they simply fail. The OcaLockManager class may optionally be instantiated to implement
the ability for a Controller to request a lock and wait until it is granted. The class includes features to
abort waits on request or if they have not been granted within specified time periods.

The normative specification of OcaLockManager is in [AES70-2A(Managers)].

27. Reliability

Reliability means the cumulative effect of Availability (Clause 27.1) and Robustness (Clause 27.2).

The aim of AES70 is to support networks capable of operating at levels of reliability sufficient to satisfy:

 international regulations governing emergency evacuation systems.
 commercial and government uptime and robustness requirements.

 - 81 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 public media and live performance uptime and robustness requirements.

27.1. Availability

See definition 7.

27.1.1. Device availability monitoring

The availability of Devices should be monitored continuously. The implementation of this monitoring
will depend on the specific AES70 protocol being used. For example, the OCP.1 protocol defined by
[AES70-3} specifies the use of periodic Keep-alive messages.

27.1.2. Efficient reinitialization

In the event of errors and configuration changes, the protocol implementation should reinitialize the
affected Devices quickly and efficiently.

27.2. Robustness

See definition 65.

To support Robust implementations, AES70 shall include mechanisms to confirm operation, and shall
define fault-tolerant mechanisms that are resistant to PDU losses and Device failures.

AES70 protocol implementations may use network-type-specific Robustness mechanisms. For example,
when the OCP.1 protocol (see [AES70-3]) runs on Ethernet, its implementation can take advantage of
spanning-tree protocols to increase resistance to network link failures.

28. Device Reset

A Device may support the Device Reset mechanism to recover from catastrophic errors. A Device Reset
shall have the effect of returning the affected Device to the state it was in immediately following power-
up. A Device Reset shall cause all the Device's initialization data (for example, routing information) to be
deleted.

NOTE 1 It is expected that Device Resets will be used only in extreme situations.

A Device Reset shall be invoked by the Device's receipt of a Device-Reset Command. A Device-Reset
Command shall be a special message that includes a 128-bit security key (the Reset Key). The value of this
key shall match a previously-stored value in the Device. If it does not, the Device-Reset Command shall
have no effect.

The Reset Key value shall be set by a Controller call to the SetResetKey method of the Device Manager.
The memory of this value shall not survive a power-up reset. If a Device has not received a Reset Key
value since its most recent power-up reset, it shall ignore all Device-Reset Commands.

NOTE 2 Since a successful Device-Reset Command causes a power-up reset, a Device-Reset Command
will cause the affected Device to forget its Reset Key.

Device-reset Commands shall be sent using Lightweight Notification Delivery Mode, and may be
multicast where the protocol in use permits.

 - 82 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTE 3 When AES70 security is not being used, the Device Reset mechanism is insecure, since the Reset
Key may be changed at any time. Full security of the Device Reset mechanism will only be available when
overall AES70 security is enabled.

Devices which implement the Device Reset mechanism should provide a manual means (for example:
switch, jumper, or panel command) to disable the feature.

29. Firmware and software upgrade

AES70 defines mechanisms for reliable upgrading of Device firmware or software over the network. The
implementation of such mechanisms is optional.

When AES70-compliant firmware and/or software upgrading is implemented, then:

1. Upgrading shall be implemented in a way which ensures the Device can recover from a failed
update. Thus, the Device must have a protected bootup downloader that continues to function
even when the Device's program memory contains an invalid image, or no image.

2. Security of the firmware or software upgrade shall be handled through the normal security
mechanism for control data - see Clause 25.

3. Implementers of AES70-compliant firmware upgrade mechanisms should take care to ensure that
firmware upgrades are properly signed and controlled. The specifics of such controls are outside
the scope of AES70.

29.1. Update Types

AES70 shall support Devices with multiple firmware components per Device, and shall allow Devices to
support any of the following four update types:

1. Fully Transaction-Based updates, in which newly received component firmware images shall be
placed into service only when all component image loads have succeeded. If any component
update fails, the Device shall revert to all its old images.

2. Partly Transaction-Based updates, in which each newly received component firmware image
shall be placed into service immediately after its particular load has succeeded. If the
component's image load fails, the Device shall revert to the component's previous image.

NOTE 1 This method can cause a Device to contain a mix of old and new images at the end of a
partially-successful update process. If a Device's implementation is not tolerant of this situation,
the Device may be rendered nonfunctional and non-updateable - in common language, bricked.

3. Guarded Non-Transaction-Based updates, in which incoming component firmware images shall
immediately overwrite current firmware. If an image load fails, the Device shall reload failsafe
(sometimes called "golden") images from internal read-only memory; these images shall provide
sufficient function for a manual retry of the update and/or reversion to pre-update software
versions.

4. Unguarded Non-Transaction-Based updates, in which incoming component firmware images
shall immediately overwrite current firmware, with no failsafe mechanism to recover from failed
uploads.

 - 83 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

NOTE 2 Failed unguarded non-transaction-based uploads are liable to render Devices
nonfunctional.

In what follows, the term Updater shall refer to the Controller that is driving the firmware update
process.

29.2. Update Modes

AES70 defines two modes by which firmware image data may be updated, as follows:

 Active Updating, in which the Updater shall call specific methods in the Device to upload
firmware image data into said Device;

 Passive Updating, in which the Device shall download firmware image data from a source
specified by the Updater.

Either update mode can support any of the four update types described in Clause 29.1. Choice of update
type and update mode is at the discretion of Device designers.

29.3. Mechanisms

All firmware updating shall be managed by the OcaFirmwareManager object.

29.3.1. Active Updating

The Active Update of a Device shall proceed as follows:

1. The Updater shall call the OcaFirmwareManager.StartUpdateProcess(...) method.

2. For each firmware component image to be updated, the Updater shall:

a. Call the OcaFirmwareManager.BeginActiveImageUpdate(...) method to start the
component update.

a. Call the OcaFirmwareManager.AddImage(...) method as many times as necessary to upload
the complete component firmware image to the Device.

b. Call the OcaFirmwareManager.VerifyImage(...) method, which causes the Device to verify
the integrity of the uploaded component firmware image.

c. Call the OcaFirmwareManager.EndActiveImageUpdate(...) method, which causes the
Device to complete the update of a particular component.

3. The Updater shall call the OcaFirmwareManager.EndUpdateProcess(...) method, which shall
cause the Device to complete the update process.

In a Fully-Transaction-Based update, the Device shall place the uploaded images into operation in step 3,
but only if all uploads have succeeded.

In a Partly-Transaction-Based update, the Device shall place each uploaded image into operation in step
2d, but only if image verification has succeeded.

In a Guarded or Unguarded Non-Transaction-Based update, the Device shall place the segments of each
uploaded image into operation at the conclusion of step 2c.

 - 84 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

29.3.2. Passive Updating

The Passive Update of a Device shall proceed as follows:

1. The Updater shall call the OcaFirmwareManager.StartUpdateProcess(...) method.

2. For each firmware component image to be updated:

a. The Updater shall call the OcaFirmwareManager.BeginPassiveComponentUpdate(...)
method, passing the hostname of a network fileserver and the filename of the component
firmware image the Device shall download from the fileserver.

b. The Device shall download the specified firmware image file.

3. When all image files have been downloaded, the Updater shall call the
OcaFirmwareManager.EndUpdateProcess(...) method, which shall cause the Device to
complete the update process.

In a Fully-Transaction-Based update, the Device shall place the uploaded images into operation in step 3,
but only if all uploads have succeeded.

In a Partly-Transaction-Based update, the Device shall place each uploaded image into operation at the
end of step 2b.

In a Guarded or Unguarded Non-Transaction-Based update, the Device shall place each uploaded image
into operation at the end of step 2b.

 - 85 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex A. (Informative) Actuator example

A.1. General

To see how classes are generally constructed, we examine OcaGain in more detail. OcaGain is an
Actuator, but its general way of working is the same for all classes; Workers, Managers, or Agents.

OcaGain's class tree Inheritance is shown in Figure Figure 16. Note that the topmost three classes -
OcaRoot, OcaWorker, and OcaActuator - are abstract classes that will never be instantiated in isolation.
They are present in the class tree to express certain common characteristics of objects, Workers, and
Actuators, respectively.

Figure 16. OcaGain lineage

OcaGain's properties, methods, and events are a combination of its own specific elements and elements
inherited from its ancestors, OcaActuator, OcaWorker, and OcaRoot. The complete set of properties is
given in Table 14. These properties are accessed via method calls, shown in Table 15. Events that may be
raised by OcaGain are shown in Table 16.

Table 14. OcaGain properties
Access: "RO" = read-only; "RW" = read-and-write, "DD" = Device dependent

Name ID Datatype Acc
ess

Description Defined in

ClassID 01p01 OcaClassID RO ClassID of OcaGain class OcaGain
Class Version 01p02 OcaUint16 RO Version number of OcaGain class OcaGain

Object
Number 01p03 OcaONo RO Object number of OcaGain

instance OcaGain

Lockable 01p04 OcaBoolean RO True if object can be locked. OcaRoot

Role 01p05 OcaString RO Role of object in Device, for
example, "Channel 1 Gain" OcaRoot

LockState 01p06 OcaLockState RO Current lock state of object OcaRoot

Enabled 02p03 OcaBoolean RW
True if object is enabled, false if
object is disabled or the property
has no effect

OcaWorker

Ports 02p04 OcaList<
OcaPort> DD Collection of input and output

ports that this object has OcaWorker

Label 02p05 OcaString RW Purpose of object in system, for
example, "Elvis Vocal Gain" OcaWorker

Owner 02p06 OcaONo RO Object number of containing Block OcaWorker

OcaRoot

OcaWorker

OcaActuator

OcaGain

Parent for all
classes

Parent for all
workers

Parent for all
actuators

Gain actuator

 - 86 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Name ID Datatype
Acc
ess Description Defined in

Latency OcaTimeInterval DD Processing latency of this object. OcaWorker

PortClockMap

OcaMap<
OcaPortID,
OcaPortClockMapEntry
>

DD Port clock map for this object OcaWorker

Owner 02p06 OcaONo RO Object number of containing Block OcaWorker
Gain 04p01 OcaDB RW The gain value in dB OcaGain

Table 15. OcaGain methods

Name ID Description Defined in

GetClassIdentification(...) 01m01 Gets ClassID and Class Version OcaRoot

GetLockable(...) 01m02 Gets value of Lockable property OcaRoot

SetLockNoReadWrite(...) 01m03 Locks the object totally OcaRoot

Unlock(...) 01m04 Unlocks the object OcaRoot

GetRole(...) 01m05 Gets value of Role property OcaRoot

SetLockNoWrite(...) 01m06 Locks the object so that it may only be controlled
by the lockholder but others can query it

OcaRoot

GetLockState(...) 01m07 Gets value of LockState property OcaRoot

GetEnabled(...) 02m01 Gets value of Enabled property OcaWorker

SetEnabled(...) 02m02 Sets value of Enabled property OcaWorker

AddPort(...) 02m03 Adds a Signal Port to the object OcaWorker

DeletePort(...) 02m04 Deletes a Signal Port from the object OcaWorker

GetPorts(...) 02m05 Gets list of the object's Signal Ports OcaWorker

GetPortName(...) 02m06 Gets name of a Signal Port OcaWorker

SetPortName(...) 02m07 Sets name of a Signal Port OcaWorker

GetLabel(...) 02m08 Gets value of Label property OcaWorker

SetLabel(...) 02m09 Sets value of Label property OcaWorker

GetOwner(...) 02m10 Gets ONo of containing Block OcaWorker

GetLatency(...) 02m11 Gets value of Latency property OcaWorker

SetLatency(...) 02m12 Sets value of Latency property OcaWorker

GetPath(...) 02m13 Gets hierarchical Block nesting path to this object OcaWorker

GetPortClockMap(...) 02m14 Gets value of PortClockMap property OcaWorker

SetPortClockMap(...) 02m15 Sets value of PortClockMap property OcaWorker

GetPortClockMapEntry(...) 02m16 Gets a PortClockMap entry OcaWorker

SetPortClockMapEntry(...) 02m17 Sets a PortClockMap entry OcaWorker

DeletePortClockMapEntry(...) 02m18 Deletes a PortClockMap entry OcaWorker

GetGain(...) 04m01 Returns value of Gain property OcaGain

SetGain(...) 04m02 Sets value of Gain property OcaGain

Table 16. OcaGain event

 - 87 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Name ID Description Defined in

PropertyChanged(...) 01e01 Raised when a property of the object changes value OcaRoot

As the above tables show, the repertoire of method calls is relatively large - larger than a simple Device
may need. AES70 defines a not implemented status value which a Device may return for unimplemented
methods or method options.

 - 88 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex B. (Informative) Block examples

B.1. Simple microphone channel

Figure Figure 17 shows a Signal Flow diagram for a typical microphone channel of a mixer.

Figure 17. Simple microphone channel Signal Flow

B.2. Two-channel microphone mixer

Figure Figure 18 illustrates the use of Blocks in larger assemblies. The microphone channel Block of
Figure 17B.1 is replicated and combined with another gain control to make a simple microphone mixer.

Figure 18. Two-channel microphone mixer

In this case, the master gain object has been given two Input Ports in order to represent the mixing
function.

The reader will notice that there is no explicit object for the mix bus and summing amplifier. For this
simple mixer, the mix bus and summing amplifier do not have any parameters that are remotely
controllable. Therefore, they do not have a corresponding AES70 object. More sophisticated mixers might
have control and/or monitoring functions associated with the summing subsystem. In that case, the
Signal Flow might include an explicit summing point object.

B.3. Mixer using nested Blocks

This example considers the equalizer object shown in the microphone channel model in Figure B.1. A
typical microphone channel equalizer might contain a high-pass filter section, followed by three
parametric equalizer sections.

in 1

in 2

master
gain

SW Mtr

SW G E G M

SW Mtr

SW G E G M

out

 - 89 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

AES70 defines object classes that can be used to model a high-pass filter (HPF) or a parametric equalizer.
To model our typical microphone channel equalizer, we could use one OcaFilterClassical instance,
followed by three OcaFilterParametric instances.

These could simply be added to the microphone channel in sequence - see Figure 19.

Figure 19. Mic channel with EQ sections inline

Alternatively, we could define a Block named, say MicEqualizer, that contained all the equalizer objects
and nest it inside the microphone channel Block - see Figure 20. This arrangement will be easier to use in
reconfigurable Devices. It might also make Controller implementation simpler, particularly if the same
equalizer were used in various parts of the Device, or in other products.

Figure 20. Microphone channel with MicEqualizer Block

2-pos
switch gain HPF gain

in

PAD
0, 20dB

mute

2-pos
switch

Preamp
Gain

Main
Channel
Fader

Phantom
Power

Audio level meter

VU Meter
Sensor

PEQ PEQ PEQ
out

HPF : high-pass filter
PEQ : parametric equalizer

out

2-pos
switch gain MicEqualizer gain

in
mute

2-pos
switch

Phantom
Power

Audio level meter

VU Meter
Sensor

outHPFin PEQ PEQ PEQ HPF : high-pass filter
PEQ : parametric equalizer

PAD
0, 20dB

Preamp
Gain

Main
Channel
Fader

 - 90 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex C. (Informative) Networking examples

C.1. Elaborate CM4 example

This clause illustrates an example of a CM4 configuration for an imaginary Device with extensive
networking features. As illustrated in Figure 21, the Device implements one Control Protocol - AES70
OCP.1 - and three media transport protocols - AES67, Dante™, and MILAN.

The Device has five Network Interface objects and four data network connections: two wired ethernet
ports, one Wi-Fi ethernet adapter, and a USB port.

Figure 21. Example: CM4 multi-network configuration

In this picture:

 Network Interfaces 2, 4, and 5 are attached to physical data network connectors.
 Network Interfaces 2 and 4 are attached to the same connector. Network Interface 2 supports IP

(OSI layer 3), while Network Interface 4 supports AVB (OSI layer 2).
 Network Interface 1 is attached to a wireless network adapter.
 Network Interface 3 is attached to a USB port.
 The AES67 media transport network control application has a redundant network configuration

using Network Interfaces 1 and 2.
 The Dante media transport application just uses Network Interface 2.

Oca
Network

Application

OcaNetwork
InterfaceAssignments

OcaNetwork
Interface 3

OcaNetwork
Interface 4

OcaNetwork
Interface 2

OcaNetwork
Interface 1

Aes67Oca
MediaTransport

Application

OcaNetwork
InterfaceAssignments

DanteOca
MediaTransport

Application

OcaNetwork
InterfaceAssignments

Oca
MediaTransport

Application

OcaNetwork
InterfaceAssignments

.SystemIo
InterfaceName

IP Parameters

.SystemIo
InterfaceName

IP Parameters

.SystemIo
InterfaceName

USB Parameters

.SystemIo
InterfaceName

Milan Parameters

OcaNetwork
Interface 5

.SystemIo
InterfaceName

Milan Parameters

AES67 media
transport

Dante media
transport

AES70
control

MILAN media
transport

network
application

layer

network
interface

layer

system
layer

usb0

RJ45

eth1

USB RJ45

eth2eth0

WiFi

 - 91 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

 The AES70 control application has a redundant network configuration using Network Interfaces
2 and 3.

 The MILAN media transport application has a redundant network configuration using Network
Interfaces 4 and 5.

 The small wiggly lines are system Network Interface instances. The names beneath them are
typical interface names used by Linux and other operating systems.

This diagram is not meant to suggest that support for AES67, Dante, and MILAN media transport
protocols, and USB-based control are built into the Core AES70 Specification. The example is a
hypothetical one intended to illustrate the flexibility of the CM4 scheme.

 AES70 specifications for particular Control Protocols are provided in additional standards in the AES70
family. [AES70-3] is an example.

AES70 specifications for support of particular media transport protocols are provided in additional
standards in the AES70 family called Adaptations. See Clause 7.

C.2. Typical NAC Control Applications for IP networks

The two examples here show NAC Stack configurations for simple Control Applications over IP
networks.

C.2.1. Case I - no Service Advertising

Figure 22 illustrates a configuration without Service Advertising.

C.2.2. Case II - with Service Advertising

Figure 23 illustrates a configuration with Service Advertising.

 - 92 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 22. NAC Stack for simple IPv4 Network Application with no Service Advertising

 - 93 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Figure 23. NAC Stack for simple IPv4 Network Application with Service Advertising

 - 94 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex D. (Informative) Networking feature set versions

In successive versions of AES70, its networking feature set has significantly evolved, including
conceptual rework of the media transport connections and sessions part.

Versions of the networking feature set are identified as AES70-CMn, where (n) is a version number. The
"AES70" prefix may be omitted in the text of this and other standards of the AES70 family, where the
context is clear. “CM” originates from “connection management”.

 AES70-CM1 was a developmental scheme that was never standardized.

 AES70-2015's connection management scheme is identified as AES70-CM2 or just CM2.

 AES70-2018's scheme is identified as AES70-CM3, or just CM3.

 AES70-2023's scheme described in this document is divided into two models, a basic networking
model identified as Network Application Control (NAC), and a NAC application model specifically
for connection management, identified as AES70-CM4 or just CM4.

For AES70-2023, the networking classes have been considerably revised. As a result, a number of classes
described in CM2 (i.e. in AES70-2015) and CM3 (AES70-2018) are now deprecated. These deprecated
classes are defined in [AES70-2A], in UML packages designated for deprecated definitions.

In AES70-2023, media transport related concepts and properties are rearranged in a more intuitive and
implementation-friendly way. The most prominent changes are:

 NAC basic networking model (new):

 New class and datatypes for controlling the Device's relationship to one or more attached data
networks. For example, a NAC instance will contain a Device's IP connection parameters.

 Separation of basic networking functions from functions of specific network applications such as
connection management.

 Connection management model:

 Replaced the stream "connector" metaphor with a more general Media Stream Endpoint concept.

 Added the concept of Media Session Management, with new functions for supporting at least the
following potential uses:

 Implement a control interface for both local and remote Endpoints. Previous versions had no
option for controlling remote endpoints.

 Implement persistent Media Stream Connections that survive communication interruptions.

 Implement grouping of individual Media Stream Connections into Sessions.

 - 95 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex E. (Informative) OcaGroup implementation considerations

E.1. General

OcaGroup is described above in Clause 13 and specified normatively in [AES70-2A]. This informative
Annex discusses implementation options.

E.2. Aggregation rules

Groups may be implemented with a variety of Aggregation Rules. Appropriate Aggregation Rules
depend on the datatypes of the properties being grouped, on the Devices involved, and on the
application.

A summation rule may be used for continuous-value parameters such as gain and delay:

 Member setpoint = Group Setpoint + Member Offset

where Member Offset is a value private to each Member that makes its setpoint different from the Group
Setpoint. It may be thought of as a Member-specific "trim" setting.

In Hierarchical Mode, Member Offset values result from direct Controller calls to individual Member
Set(...) methods, bypassing the Group. In Peer-to-Peer mode, no such behavior is possible, and the
Member Offsets are all zero.

A ganging rule may be used for setting discrete-value parameters, such as selector switch settings:

 Member Setpoint = Group Setpoint

The above are examples; actual details of specific Aggregation Rules are outside the normative scope of
this standard.

E.3. Saturation rules

The two most straightforward Saturation Rules are:

Saturating The Group allows all setpoint changes, but truncates values sent to individual
Members so that out-of-range conditions are avoided.

Nonsaturating The Group refuses to make any setpoint changes that would force any Member's
property out of range.

Details of specific Saturation Rules are outside the normative scope of this standard.

 - 96 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex F. (Informative) MIME media type

MIME media content-type strings are defined normatively by [RFC 2045(5.1)] and have the following
format:

content-type := type "/" subtype *(";" parameter)
where

type := discrete-type | composite-type
where

discrete-type := "text" | "image" | "audio" | "video" |
"application" | extension-token

composite-type := "message" | "multipart" | extension-token
where

extension-token := iana-token | x-token
iana-token := <a token registered with IANA>
x-token := {"X-" | x-"}<anything>

subtype := extension-token | iana-token
where extension-token and iana-token are as above)

parameter := attribute "=" value
where

attribute := token
value := token | quoted-string
where

token := << anything ASCII except ()[]<>\/;:?,="@ >>

For examples of AES70's use of MIME media types, see the definition of OcaDataset types in Clause 19.3,
and particularly the list of specific types used in Table 12.

MIME media types are registered with IANA, the Internet Assigned Numbers Authority. The complete
list of registered types is at [IANA-01].

For RTP media transport, MIME media types are described in [RFC 4856] and [RFC 3190].

 - 97 - AES70-1-2024-CFC

Annex G. (Informative) New features in the AES70-2024 Core Specification

New features in the AES70-2024 Core Specification are as follows:

 Protocol specification for using AES70 over point-to-point links

AES70-3 has been rearranged and expanded to include a specification for using the OCP.1 protocol
over point-to-point links.

 New control class OcaGroup

Simplified and more flexible control-aggregation class.

 Simplified OcaMatrix control class

Simpler and more flexible.

 New class OcaCommandSetAgent

Easy-to-use class for immediate execution of a set of AES70 commands with one call.

 New OcaSubscriptionManager methods for registering multiple subscriptions

The new methods allow a controller to set up multiple subscriptions with a single call. All types of
subscriptions are supported.

 Small corrections

Various typographical errors and cross-reference issues have been fixed.

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex H. (Informative) Deprecated mechanisms

This informative Annex lists mechanisms of AES70-2018 that are deprecated in AES70-2023, and
describes their AES70-2023 replacements. For normative definitions of these mechanisms, please refer to
the AES70-2018 documents.

H.1. AES70 Libraries

The AES70 Library Feature Set is deprecated. It is replaced by the Dataset-based feature set defined in
Clause 19. The new feature has all the functionality of the deprecated one, but supports much larger data
sizes. The deprecated mechanism limits data size to 65,536 bytes.

H.2. OcaTaskManager-based task feature set

The OcaTaskManager class and related datatypes have been replaced by the Dataset-based scheme
specified in Clause 16. The new feature set improves the logic and workflow, and facilitates the
definition of Reusable Blocks (Clause 11.4) with Task features.

H.3. Event mechanism version EV1

The AES70-2018 Event and Subscription feature set, now identified as EV1, has been replaced by a more
efficient and easier-to-implement scheme identified as EV2. The basic operation of EV2 is the same as
that of EV1, but the details have been simplified with no loss of functionality.

The differences between EV1 and EV2 are as follows:

 Context property. EV1 Event notifications contain a property Context that is an arbitrary data
value supplied by the Controller at subscription time. EV2 omits this property.

 Notification format. In the OCP.1 protocol, EV2 notification messages differ from EV1
notification messages in the following ways:

 EV2 notifications have a different message-type value than EV1 notifications.
 EV2 notification message format is slightly different from that of EV1.
 When a subscription is cancelled for any reason, a special EV2 notification message is

generated informing subscribers that the cancellation. EV1 emits no such notification.

For more details of EV1, please refer to the AES70-2018 standard.

H.4. Networking classes and the CM3 connection management mechanism

The following CM3 Control Classes are deprecated:

 OcaApplicationNetwork
 OcaControlNetwork
 OcaMediaTransportNetwork
 OcaCodingManager

As well, the related CM3 datatypes are deprecated and replaced by new equivalents. The replacement
classes and datatypes are described in Clauses 14 and 15 above, and defined normatively in [AES70-2A].

 - 98 - AES70-1-2024-CFC

AES STANDARDS COMMITTEE USE ONLY - NOT FOR PUBLICATION 2024.04.12 CFC

Annex I. Bibliography

IEEE-1. Guidelines for Use [of] Organizationally Unique Identifier (OUI) and Company ID (CID). Institute of
Electrical and Electronic Engineers. https://standards.ieee.org/develop/regauth/tut/eui.pdf

IEEE-2. IEEE Registration Authority Home Page. Institute of Electrical and Electronic Engineers.
http://standards.ieee.org/develop/regauth/index.html.

NMOS-IS-04. AMWA IS-04 NMOS Discovery and Registration Specification. Advanced Media
Workflow Association (AMWA). https://specs.amwa.tv/is-04.

Wiki-001. Alignment Level. Wikipedia. https://en.wikipedia.org/wiki/Alignment_level

Wiki-002. International Atomic Time. Wikipedia.
https://en.wikipedia.org/wiki/International_Atomic_Time

Wiki-003. Replay attack. Wikipedia. https://en.wikipedia.org/wiki/Replay_attack.

Wiki-004. Syslog. https://en.wikipedia.org/wiki/Syslog

 - 99 - AES70-1-2024-CFC

