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The estimation of modal decay parameters from noisy measurements of reverberant and
resonating systemsis acommon problem in audio and acoustics, such asin room and concert
hall measurements or musical instrument modeling. Reliable methods to estimate the initial
response level, decay rate, and noise floor level from noisy measurement data are studied and
compared. A new method, based on the nonlinear optimization of a model for exponential
decay plus stationary noise floor, is presented. A comparison with traditional decay param-
eter estimation techniques using simulated measurement data shows that the proposed
method outperformsin accuracy and robustness, especially in extreme SNR conditions. Three
cases of practical applications of the method are demonstrated.

0 INTRODUCTION

Parametric analysis, modeling, and equalization (inverse
modeling) of reverberant and resonating systems find
many applications in audio and acoustics. These include
room and concert hall acoustics, resonators in musical
instruments, and resonant behavior in audio reproduction
systems. Estimating the reverberation time or the modal
decay rate are important measurement problems in room
and concert hall acoustics [1], where signal-to-noise ratios
(SNRs) of only 30-50 dB are common. The same prob-
lems can be found, for example, in the estimation of
parameters in model-based sound synthesis of musical
instruments, such as vibrating strings or body modes of
string instruments [2]. Reliable methods to estimate
parameters from noisy measurements are thus needed.

In anideal case of modal behavior, after a possible ini-
tial transient, the decay is exponentia until a steady-state
noise floor is encountered. The parameters of primary
interest to be estimated are

* Initial level of decay L,
* Decay rate or reverberation time Tp,
* Noisefloor level L.

* Presented in the 110th Convention of the Audio Engineering
Society, Amsterdam, The Netherlands, 2001 May 12-15;
revised 2001 November 8 and 2002 September 6.

J. Audio Eng. Soc., Vol. 50, No. 11, 2002 November

In amore complex case there can be two or more modal
frequencies, whereby the decay is no longer simple, but
shows additional fluctuation (beating) or a two-stage (or
multiple-stage) decay behavior. In a diffuse field (room
acoustics) the decay of a noiselike response is approxi-
mately exponentia in rooms with compact geometry. The
noise floor may also be nonstationary. In this paper we pri-
marily discuss a simple mode (that is, a complex conju-
gate pole pair in the transfer function) or a dense set of
modes with exponential reverberant decay, together with a
stationary noise floor.

Methods presented in the literature and commonsense
or ad hoc methods will first be reviewed. Techniques
based on energy—time curve analysis of the signal enve-
lope are known as methods where the noise floor can be
found and estimated explicitly. Backward integration of
energy, so-called Schroeder integration [3], [4], is often
applied first to obtain a smoothed envelope for decay rate
estimation.

The effect of the background noise floor is known to be
problematic, and techniques have been developed to com-
pensate the effect of envelope flattening when the noise
floor in ameasured responseis reached, including limiting
the period of integration [5], subtracting an estimated
noise floor energy level from aresponse [6], or using two
separate measurements to reduce the effect of noise [7].
The iterative method by Lundeby et a. [8] is of particular
interest since it addresses the case of noisy datawith care.

867



KARJALAINEN ET AL.

Thistechnique, as most other methods, analyzestheinitial
level L,, the decay time T, and the noise floor L sepa-
rately, typicaly starting from a noise floor estimate.
Iterative procedures are common in accurate estimation.

A different approach was taken by Xiang [9], where a
parameterized signal-plus-noise model is fitted to
Schroeder-integrated measurement data by searching for a
least-squares (LS) optimal solution. In this study we have
elaborated a similar method of nonlinear LS optimization
further to make it applicable to a wide range of situations,
showing good convergence properties. A specific parame-
ter and/or a weighting function can be used to fine-tune
the method further for specific problems. The techniqueis
compared with the Lundeby et al. method by it applying to
simulated cases of exponential decay plus a stationary
noise floor where the exact parameters are known. The
improved nonlinear optimization techniqueis found to out-
perform traditional methods in accuracy and robustness,
particularly in difficult conditions with extreme SNRs.

Finaly, the applicability of the improved method is
demonstrated by three examples of real measurement
data: 1) the reverberation time of a concert hal, 2) the
low-frequency mode analysis of a room, and 3) the para-
metric analysis of guitar string behavior for model-based
sound synthesis. Possibilities for further generalization of
the technigue to more complex problems, such as two-
stage decay, are discussed briefly.

1 DEFINITION OF PROBLEM DOMAIN

A typical property of resonant acoustic systems is that
their impulse response is a decaying function after a pos-
sible initial delay and the onset. In the simplest case the
response of a single-mode resonator system is

h(t) = Ae* (1) sinfo(t = to) + o] u(t —to) (1)

where u(t — ty) isastep function with value 1 for t = t, and
0 elsawhere, Aistheinitial response level, t, the response
latency, for example, due to the propagation delay of
sound, T the decay rate parameter, w = 2rf the angular
frequency, and ¢ the initial phase of the sinusoidal
response. In practical measurements, when there are mul-
tiple modes in the system and noise (acoustic noise plus
measurement system noise), a measured impul se response
is of the form®

h(t) = %Aieﬂi(t*tv) Sin[wi (t—to) + q)i] Ann(t)
i=1 (2)

where A, is the rms value of background noise and n(t) is
the unity-level noise signal. Fig. 1 illustrates a single
delayed mode response corrupted by additive noise.

The task of this study is defined as finding reliable esti-
mates for the parameter set { A, T, tp, w;, ¢;, A}, given a
noisy measured impulse response of the form of Eq. (2).

5Inamore general casetheinitial delays of signal components
may differ and there can be simple nonresonant exponential
terms, but these cases are of less importance here.
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The main interest hereis focused on systems of 1) separa-
ble single modes of type (1), including additive noise
floor, or 2) the dense (diffuse, noiselike) set of modes
resulting also in exponential decay similar to Fig. 1. In
both cases the parameters of primary interest are A, T, A,,,
and t;.

Often the decay time Ty is of main interest, for exam-
ple, in room acoustics where the reverberation time [10],
[11] of 60-dB decay® T, is related to t by

Too = — In(107%) = 6908 ©)

T T
Modern measurement and analysis techniques of system
responses are carried out by digital signal processing
whereby the discrete-time formulation for modal decay
(without initial delay) with sampling rate f, and sample
period T4 = 1/f, becomes

h(n) = Ae ™" sin(Qn + ¢) (4)

with n being the sample index, tq = Tgt, and Q = 2xT,f.

2 DECAY PARAMETER ESTIMATION

In this section an overview of the known techniques for
decay parameter estimation will be presented. Initial delay

61n practice, the reverberation time is often determined from
the slope of a decay curve using only the first 25 or 35 dB of
decay and extrapolating the result to 60 dB. For a recommended
practice of reverberation time determination, see [1].
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Fig. 1. (a) Single-mode impul se response (sinusoidal decay) with
initial delay and additive measurement noise. (b) Absolute value
of response on dB scale to illustrate decay envelope. (c) Hilbert
envelope; otherwise same as (b).
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and level estimation are first discussed briefly. The main
problem, decay rate estimation, is the second topic.
Methods to smooth the decay envelope from a measured
impulse response are presented. Noise floor estimation, an
important subproblem, is discussed next. Finaly, tech-
niques for combined noise floor and decay rate estimation
are reviewed.

2.1 Initial Delay and Initial Level Estimation

In most cases the initial delay and the initial level par-
ameters are relatively easy to estimate. The initial delay
may be short, not needing any attention, or the initial bulk
delay can be cut off easily up to the edge of response
onset. Only when the onset is relatively irregular or the
SNR is low, can the detection of onset time be difficult.

A simple technique to eliminate initial delay isto com-
pute the minimum-phase component hygna(t) of the
measured response [12]. An impulse response can be
decomposed as a sum of minimum-phase and excess-
phase components, h(t) = Npphase(t) + Nepnase(t). Since the
excess-phase component will have all-pass properties
manifested as a delay, computation of the minimum-phase
part will remove the initial delay.

The initial level in the beginning of the decay can be
detected directly from the peak value of the onset. For
improved robustness, however, it may be better to estimate
it from the matched decay curve, particularly its value at
the onset time.

In the case of a room impulse response, the onset cor-
responds to direct sound from the sound source. It may be
of special interest for the computation of the source-to-
receiver distance or in estimating the impul se response of
the sound sourceitself by windowing the response prior to
the first room reflection.

2.2 Decay Rate Estimation

Decay rate or time estimation isin practice based on fit-
ting a straight line to the decay envelope, such as the
energy—time curve, mapped on a logarithmic (dB) scale.
Before the computerized age this was done graphically on
paper. The advantage of manual inspection is that an
expert can avoid data interpretation errors in pathological
cases. However, in practice the automati c determination of
the decay rate or time is highly desirable.

2.2.1 Straight-Line Fit to Log Envelope

Fitting aline in alogarithmic decay curve is a concep-
tually and computationally simple way of decay rate esti-
mation. The decay envelope y(t) can be computed simply
as a dB-scaled energy —time curve,

y(t) = 10log;o[x?(t)] ©)

where x(t) is the measured impulse response or a band-
pass filtered part of it, such as an octave or one-third-
octave band. It is common to apply techniques such as
Schroeder integration and Hilbert envelope computation
(to be described later) in order to smooth the decay curve
before linefitting. Least-squares linefitting (linear regres-
sion) is done by finding the optimal decay rate k and the
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initia level a,

T
using, for example, the Matlab function polyfit [13].

Practical problems with line fitting are related to the
selection of the interval [t;, t,] and cases where the decay
of the measured response isinherently nonlinear. The first
problem is avoided by excluding onset transients in the
beginning and the noise floor at the end of the measure-
ment interval. The second problem is related to such cases
as two-stage decay (initial decay rate or early reverbera-
tion and late decay rate or reverberation) or beating (fluc-
tuation) of the envelope because of two modes close in
frequency [see Fig. 9(b)].

t

[y(t) - (k + a)] o (®)

2.2.2 Nonlinear Regression (Xiang’s Method)

Xiang [9] formulated a method where a measured and
Schroeder-integrated energy —time curve is fitted to a para-
metric model of alinear decay plus a constant noise floor.
Since the model is not linear in its parameters, nonlinear
curve fitting (nonlinear regression) is needed. Mathemati-
caly, thisis done by iterative means such as starting from
aset of initia values for the model parameters and apply-
ing gradient descent to search for aleast-squares optimum,

min I
X, X, X3 “h

where y.(t) is the Schroeder-integrated energy envelope,
X, the initial level, x, the decay rate parameter, X; a noise
floor related parameter, L the length of the response, and
[t;, t;] the time interval of nonlinear regression. Notice
that the last term for the noise floor effect is a descending
ling, instead of a constant level, due to the backward inte-
gration of noise energy [9].

Nonlinear optimization is mathematically more com-
plex than linear fitting, and care should be taken to guar-
antee convergence. Even when converging, the result may
be only a local optimum, and generally the only way to
know that a global optimum is found is to apply exhaus-
tive search over possible value combinations of model
parameters which, in a multiparameter case, is often com-
putationally too expensive.

Nonlinear optimization techniqueswill be studied in more
detail later in this paper by introducing generalizations to
the method of Xiang and by comparing the performance of
different techniques in decay parameter estimation.

¢ {ysch(t) - [xl et 4+ x3(L — t)]}2 dt
()

2.2.3 AR and ARMA Modeling

For asingle mode of Eg. (1) the response can be mod-
eled as an impulse response of aresonating second-order
al-pole or pole—zero filter. More generally, a combina-
tion of N modes can be modeled as a 2N-order filter. AR
(autoregressive) and ARMA (autoregressive moving
average) modeling [14] are ways to derive parameters for
such models. In many technical applications the AR
method is called linear prediction [15]. For example, the
function Ipc in Matlab [16] processes a signal frame
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through autocorrelation coefficient computation and
solving normal equations by Levinson recursion, result-
ing in the Nth-order z-domain transfer function /(1 +
=N, o;z"). Poles are obtained by solving the roots of
the denominator polynomial. Each modal resonance
appears as a complex conjugate pole pair (z;, z¥) in the
complex z-plane with pole angle ¢ = arg(z) = 2rf/fg
and poleradiusr = |z;| = e, where f is the modal fre-
guency, fs the sampling rate, and t the decay parameter
of the modein Eq. (1). ARMA modeling requires an iter-
ative solution for a pole—zero filter.

Decay parameter analysis by AR and ARMA modeling
is an important technique and attractive, for example, in
cases where modes overlapping or very close to each other
have to be modeled, which is often difficult by other
means. For reverberation with high moda density the
order of AR modeling may become too high for accurate
modeling. Such accuracy is aso not necessary for analyz-
ing the overal decay rate (reverberation time) only. AR
and ARMA modeling of modal behavior in acoustic sys-
tems are discussed in detail, for example, in [17].

2.2.4 Group Delay Analysis

A complementary method to AR modeling is to use the
group delay, that is, the phase derivative Ty(w) =
—do (w)/dw, as an estimate of the decay time for separable
modes of an impulse response. While AR modeling is sen-
sitive to the power spectrum only, the group delay is based
on phase properties only. For a minimum-phase single-
mode response the group delay at the modal frequency is
inversely proportional to the decay parameter, that is, Ty =
1/x. Group delay computation is somewhat critical due to
the phase unwrapping needed, and the method can be sen-
sSitive to measurement noise.

2.3 Decay Envelope Smoothing Techniques

In the methods of linear or nonlinear curve fitting it is
desirable to obtain a smooth decay envelope prior to the
fitting operation. The following techniques are often used
to improve the regularity of the decay ramp.

2.3.1 Hilbert Envelope Computation

In this method the signal x(t) is first converted to an
analytic signal x(t) so that x(t) is the real part of x,(t) and
the Hilbert transform (90° phase shift) [12] is the imagi-
nary part of x,(t). For a single sinusoid this results in an
entirely smooth energy—time envelope. An example of a
Hilbert envelope for a noisy modal response is shown in
Fig. 1(c).

2.3.2 Schroeder Integration

A monotonic and smoothed decay curve can be pro-
duced by backward integration of the impulse response
h(t) over the measurement interval [0, T] and converting it
to alogarithmic scale,

fThz(r) 014
L(t) = 10 logyg ;7 [dB] . (8)

’é h2(t) dr
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This processis commonly known as Schroeder integration
[3], [4]. Based on its superior smoothing properties it is
used routinely in modern reverberation time measure-
ments. A known problem with it isthat if the background
noise floor is included within the integration interval, the
process produces araised ramp that biases upward the late
part of the decay. Thisis shown in Fig. 2 for the case of
noisy single-mode decay [curve (a)] for full response inte-
gration [curve (d)].

The tail problem of Schroeder integration has been
addressed by many authors (for example, in [18], [8], [5],
[6]), and techniques to reduce slope biasing have been
proposed. In order to apply these improvements, a good
estimate of the noise floor level is needed first.

2.4 Noise Floor Level Estimation

The limited SNR inherent in practically al acoustical
measurements, and especially measurements performed
under field conditions, calls for attention concerning the
upper time limit of decay curve fitting or Schroeder inte-
gration. Theoretically this limit is set to infinity, but in
practical measurementsit is naturally limited to the length
of the measured impul se response data. In practice, meas-
ured impulse responses must be long enough to accom-
modate alarge enough dynamic range or the whole system
decay down to the background noise level.”

Thus the measured impulse response typically contains
not only the decay curve under analysis, but also a steady
level of background noise, which dominates at the end of

"Thisis needed to avoid time aliasing in ML S and other cyclic
impul se response measurement methods.

! L L L1 L\ L b, L
0 200 400 600 800 1000 1200 time in samples

| T Rer |
1200 time in samples

Fig. 2. Results of Schroeder integration applied to noisy decay of
a mode. Curve (&) measured noisy response including initia
delay; curve (b) true decay of noiseless mode (dashed straight
line); curve (c) noise floor (—26 dB); curve (d) Schroeder inte-
gration of total measured interval; curve (e) integration over
short interval (0, 900 ms); curve (f) integration over interval (O,
1100 ms), curve (g) integration after subtracting noise floor from
energy—time curve; curve (h) afew decay curves integrated by
Hirata's method.
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the response. Fitting the decay line over this part of the
envelope or Schroeder integrating this steady energy level
aong with the exponential decay curve causes an error
both in the resulting decay rate (see Fig. 2) and in the
time-windowed energies (energy parameters).

To avoid bias by noise, an analysis must be performed
on the impulse response data to find the level of back-
ground noise and the point where the room decay meets
the noise level. This way it is possible to effectively trun-
cate the impulse response at the noise level, minimizing
the noise energy mixed with the actual decay.

Determination of the noise floor level is difficult
without using iterative techniques. The method by
Lundeby et al., which will be outlined later, is a good
example of iterative techniques integrated with decay
rate estimation.

A simple way to obtain areasonable estimate of aback-
ground noise floor is to average a selected part of the
measured response tail or to fit aregression lineto it [19].
Thelevel iscertainly overestimated if the noisefloor is not
reached, but this is not necessarily problematic, as
opposed to underestimating it. Another technique is to
look at the background level before the onset of the main
response. This works if there is enough initial latency in
the system response under study.

2.5 Decay Estimation with Noise Floor
Reduction

In addition to determining the response starting point, it
isthus essential to find an end point where the decay curve
meets the background noise, and to truncate the noise
from the end of the response. Fig. 2 illustrates the effect of
limiting the Schroeder integration interval. If the interval
istoo short, asin curve (€), the curve is biased downward.
Curve (f) shows a case where the bias due to noiseis min-
imized by considering the decay only down to 10 dB
above the noise floor.

There are no standardized exact methods for determin-
ing the limits for Schroeder integration and decay fitting
or noise compensation technigues. The methods are dis-
cussed next.

2.5.1 Limited Integration or Decay Matching
Interval

There are several recommendations for dealing with the
noise floor and the point where the decay meets noise. For
example, according to 1SO 3382 [1] to determine room
reverberation, the noise floor must be 10 dB below the
lowest decay level used for the calculation of the decay
slope. Morgan [5] recommends to truncate at the knee
point and then measure the decay slope of the backward
integrated response down to a level 5 dB above the noise
floor.

Faiget et a. [19] propose a simple but systematic
method for postprocessing noisy impulse responses. The
latter part of a response is used for the estimation of the
background noise level by means of a regression line.
Another regression line is used for the decay, and the end
of the useful response is determined at the crossing point
of the decay and the background noise regression lines.
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The decay parameter fitting interval ends 5 dB above the
noise floor.

2.5.2 Lundeby’s Method

Lundeby et d. [8] presented an algorithm for automati-
cally determining the background noise level, the decay-
noise truncation point, and the late decay dope of an
impul se response. The steps of the algorithm are asfollows.

1) The sguared impulse response is averaged into local
time intervals in the range of 10-50 msto yield a smooth
curve without losing short decays.

2) A first estimate for the background noise level is
determined from a time segment containing the last 10%
of the impulse response. This gives areasonable statistical
selection without alarge systematic error if the decay con-
tinues to the end of the response.

3) The decay slope is estimated using linear regression
between the time interval containing the response 0-dB
peak and the first interval 5-10 dB above the background
noise level.

4) A preliminary crosspoint is determined at the inter-
section of the decay slope and the background noise
level.

5) A new time interval length is calculated according to
the calculated slope, so that there are 3—10 interval s per 10
dB of decay.

6) The squared impulse is averaged into the new local
time intervals.

7) The background noise level is determined again. The
evaluated noise segment should start from a point corre-
sponding to 5-10 dB of decay after the crosspoint, or a
minimum of 10% of the total response length.

8) Thelate decay slopeis estimated for adynamic range
of 10-20 dB, starting from a point 5-10 dB above the
noise level.

9) A new crosspoint is found.

Steps 7-9 are iterated until the crosspoint is found to
converge (maximum five iterations).

The response analysis may be further enhanced by esti-
mating the amount of energy under the decay curve after
the truncation point. The measured decay curve is artifi-
cialy extended beyond the point of truncation by extrapo-
lating the regression line on the late decay curve to infin-
ity. The total compensation energy is formed as an ideal
exponential decay process, the parameters of which are
calculated from the late decay slope.

2.5.3 Subtraction of Noise Floor Level

Chu [18] proposed a subtraction method in which the
mean square value of the background noise is subtracted
from the original squared impulse response before the
backward integration. Curve (g) in Fig. 2 illustrates this
case. If the noise floor estimate is accurate and the noise
is stationary, the resulting backward integrated curve is
close to the ideal decay curve.

2.5.4 Hirata's Method

Hirata [7] has proposed a simple method for improving
the signal-to-noise ratio by replacing the sguared single
impulse response h2(t) with the product of two impulse
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responses measured separately at the same position,

[Tr() dt e [ () + (][ () + m(t)] a

= fo [he(t)ha (1) + hy(t)ny(t) + hy (t)ny(t) + ny(t)my(t)] dt

1+

:["’ hy(t)hy (t) + ny (t) my(t)

= [h() dt+K().

The measured impulse responses consist of the decay
terms hy(t), hy(t) and the noise terms ny(t), ny(t). The
highly correlated decay terms h,(t) and hy(t) yield positive
values corresponding to the squared response hA(t),
whereas the mutually uncorrelated noise terms ny(t) and
n,(t) are seen as a random fluctuation K(t) superposed on
the first term. Hirata's method relies on the impulse
response at large time values to be stationary. This condi-
tion isoften not met in practical concert hall measurements.

Curves (h) in Fig. 2 illustrate a few decay curves
obtained by backward integration with Hirata’'s method. In
this simulated case they correspond approximately to the
case of curve (g), the noise floor subtraction technique.

2.5.5 Other Methods

Under adverse noise conditions, a direct determination
of the T, decay curve from the squared and time-averaged
impulse response has been noted to be more robust than
the backward integration method (Satoh et al. [20]).

3 NONLINEAR OPTIMIZATION OF A DECAY-
PLUS-NOISE MODEL

The nonlinear regression (optimization) method pro-
posed by Xiang [9] was briefly described earlier. In the
present study we worked along similar ideas, using non-
linear optimization for improved robustness and accuracy.
In the following we introduce the nonlinear decay-plus-
noise model and its application in several cases.

Let us assume that in noiseless conditions the system
under study results in a simple exponential decay of the
response envelope, corrupted by additive stationary back-
ground noise. We will study two cases that fit into the
same modeling category. In the first case there is a single
mode (a complex conjugate pole pair in transfer function)
that in the time domain corresponds to an exponential
decay function,

hm(t) = Ape ™t sin(omt + ¢m) . (10)
Here A, istheinitia envelope amplitude of the decaying
sinusoidal, <, is a coefficient that defines the decay rate,
w,, isthe angular frequency of the mode, and ¢,,, istheini-
tial phase of modal oscillation.

The second case that leads to a similar formulation is
where we have a high density of modes (diffuse sound
field) with exponential decay, resulting in an exponen-
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+ dt
”2(t)”
C)
tially decaying noise signal,
ha(t) = Age ! n(t) (11)

where A, is the initial rms level of the response, 1, is a
decay rate parameter, and n(t) is stationary Gaussian noise
with an rmslevel of 1 (= 0dB).

In both Egs. (10) and (11) we assume that a practical
measurement of the system impulse response is corrupted
with additive stationary noise,

np(t) = Ayn(t)

where A, is the rms level of the Gaussian measurement
noise in the analysis bandwidth of interest, and it is
assumed to be uncorrelated with the decaying system
response. Statistically the rms envelope of the measured
response is then

a(t) =,

This is a simple decay model that can be used for para-
metric analysis of noise-corrupted measurements. If the
amplitude envelope of a specific measurement isy(t), then
an optimized least-squares (LS) error estimate for the
parameters { A, T, A} can be achieved by minimizing the
following expression over atime span [t, t;] of interest:

(12)

h2(t) + nj(t) = /AZe™> + AT (13)

t 2
min [a(t) — y(1)] ot

(14)
AT, A, Yl

Since the model of Eq. (13) is honlinear in the parameters
{A T, A}, nonlinear LS optimization is needed to search
for the minimum LS error.

By numerical experimentation with real measurement
datait iseasy to observe that L Sfitting of the model of Eq.
(14) places emphasis on large magnitude values, whereby
noise floors well below the signal starting level are esti-
mated poorly. In order to improve the optimization, agen-
eralized form of modé fitting can be formulated as

ft:' [f(a(t), t)— f(y(t), t)]2 ot

where f (y, t) is a mapping with balanced weight for dif-
ferent envelope level values and time moments.
The choice of f(y, t) = 20 log,[ y(t)] results in fitting

min
AT A,

(15
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on the dB scale. It turns out that low-level noise easily has
a dominating role in this formulation. A better result in
model fitting can be achieved by using a power law scal-
ing f(y,t) = yS(t) with the exponent s< 1, whichisacom-
promise between amplitude and logarithmic scaling. A
value of s = 0.5 has been found to be a useful default
value®

A time-dependent part of mapping f(y, t), if needed,
can be separated as a temporal weighting function w(t). A
generalized form of the entire optimization is now to find

t 2
Amnfto [w(t)as(t) — w(t)ys(t)]  dt. "

There is no clear physical motivation for the magnitude
compression exponent s. A specific temporal weighting
function w(t) can be applied case by case, based on extra
knowledge of the behavior of the system under study and
goals of the analysis, such as focusing on the early decay
time (early reverberation) of a room response.

The strengths of the nonlinear optimization method are
apparent, especially under extreme SNR conditions where
al three parameters {A, t, A} are needed with greatest
accuracy. This occurs both at very low SNR conditions
where the signal is practically buried in background noise
and at the other extreme where the noise floor is not
reached within the measured impulse response, but an
estimate of the noise level is nevertheless desired. A nec-
essary assumption for the method to work in such casesis
that the decay model is valid, implying an exponential
decay and a stationary noise floor.

Experiments show that the model is useful for both
single-mode decay and reverberant acoustic field decay
models. Fig. 3 depicts three illustrative examples of decay
model fitting to asingle mode plus noise at an initial level
of 0 dB and different noise floor levels. Because of simu-
lated noisy responses it is easy to evaluate the estimation
accuracy of each parameter. White curves show the esti-
mated behavior of the decay-plus-noise model. In Fig.
3(a) the SNR isonly 6 dB. Errorsin the parametersin this
case are a 0.5-dB underestimate of A, a 3.5% underesti-
mate in the decay time related to parameter t, and a 1.8-
dB overestimate of the noise floor A,,. In Fig. 3(b) asimi-
lar case is shown with a moderate 30-dB SNR. Estimation
errors of the parameters are +0.2 dB for A, —2.8% for
decay time, and +1.2 dB for A,. In the third case [Fig.
3(c)] the SNR is —60 dB so that the noise floor is barely
reached within the analysis window. In this case the esti-
mation errors are +0.002 dB for A, —0.07% for decay
time, and —1.0 dB for A,,. This shows that the noise floor
is estimated with high accuracy, even in this extreme case.

The nonlinear optimization used in this study is based
on using the Matlab function curvefit,? and the functions
that implement the weighting by parameter s and the
weighting function w(t) can be found at http://mwww.

8|nterestingly enough, this resembles the loudness scaling in
auditory perception known from psychoacoustics [21].

°In new versions of Matlab, the function curvefit is recom-
mended to be replaced by the function Isqcurvefit.
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acoustics.hut.fi/software/decay.

The optimization routines are found converging robustly
in most cases, including such extreme cases as Fig. 3(a)
and (c), and the initial values of the parameters for itera-
tion are not critical. However, it is possible that in rare
cases the optimization diverges and no (not even alocal)
optimum is found.1° It would be worth working out a ded-
icated optimization routine guaranteeing a result in mini-
mal computation time.

Our experience in the nonlinear decay parameter fitting
described hereisthat it still needs some extra information
or top-level iteration for the very best results. It is advan-
tageous to select the analysis frame so that the noise floor
is reached neither too early nor too late. If the noise floor
is reached in the very beginning of the frame, the decay
may be missed. Not reaching the noise floor in the frame
isaproblem only if the estimate of thislevel isimportant.
A rule for an optimal value of the scaling parameter sisto
uses= 1.0 for very low SNRs such asin Fig. 3(a), and let
it approach avalue of 0.4—0.5 when the noise floor is low,
asin Fig. 3(c) (seeaso Fig. 4).

4 COMPARISON OF DECAY PARAMETER
ESTIMATION METHODS

The accuracy and robustness of the methods for decay
parameter estimation can be evaluated by using synthetic

10The function curvefit also prints warnings of computational
precision problems even when optimization results are excellent.
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Fig. 3. Nonlinear optimization of decay-plus-noise model for
three synthetic noisy responseswith initial level of 0 dB and var-
ious noise levels. () —6 dB. (b) —30 dB. (c) —60 dB. Black
curves—Hilbert envelopes of simulated responses; white
curves—estimated decay behavior.
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decay signals or envelope curves, computed for sets of the
parameters { A, t, A} . By repeating the same for different
methods, their relative performances can be compared. In
this section we present results from a comparison of the
proposed nonlinear optimization and the method of
Lundeby et a. [8].

The accuracy of the two methods was analyzed in the
following setting. A decaying sinusoid of 1 kHz with a 60-
dB decay time (reverberation time) of 1 second was con-
taminated with white noise of Gaussian distribution and
zero mean. The initial sinusoidal level to background
noise ratio was varied from 0 to 80 dB in steps of 10 dB.
Each method under study was applied to analyze the
decay parameters, and the error to the “true” value was
computed in dB for the initial and the noise floor levels
and as a percentage of decay time.

Fig. 4 depicts the results of the evaluation for the non-
linear optimization proposed in this paper. The accuracy
of the decay time estimation in Fig. 4(a) is excellent for
SNRs above 30 dB and useful (below 10% typically) even
for SNRs of 0—10 dB. The initia level is accurate within
0.1 dB for an SNR above 20 dB and about 1 dB for an
SNR of 0 dB. The noise floor estimate is within approxi-
mately 1-2 dB up to an SNR of 60 dB and gives better
than aguess up to 70—-80 dB of SNR. (Noticethat the SNR
aone is not important here but rather whether or not the
noise floor is reached in the analysis window.)

Fig. 5 plots the same information for decay parameter
estimation using the method of Lundeby et al. without
noise compensation, implemented by us in Matlab. Since
this iterative technique is not developed for extreme
SNRs, such as 0 dB, it cannot deal with these cases with-
out extra tricks, and even then it may have severe prob-
lems. We used safety settings whereby we did not try to
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Fig. 4. Sine-plus-noise decay parameter estimation errors (aver-
age of 20 trials) for proposed nonlinear optimization method as
a function of SNR. (a) Decay time estimation error in %.
(b) Initial level estimation error in dB. (c) Noise floor estimation
error indB. —s = 0.5; ———s = 1.0.
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obtain decay time values for SNRs below 20 dB, and low
SNR parts of the decay parameter estimate curves are
omitted.

For moderate SNRs the results of the method are fairly
good and robust. The decay time shows a positive bias of
afew percent, except for an SNR below 30 dB. The noise
floor estimate is reliable in this case only up to about 50
dB SNR. Notice that the method is designed for practical
reverberation time measurements rather than for this test
case, where it could be tuned to perform better.

5 EXAMPLES OF DECAY PARAMETER
ESTIMATION BY NONLINEAR OPTIMIZATION

In this section we present examples of applying the
nonlinear estimation of a decay-plus-noise model to typi-
cal acoustic and audio applications, including reverbera-
tion time estimation, analysis and modeling of low-
frequency modes of a room response, and decay rate
analysis of plucked string vibration for model-based syn-
thesis applications.

5.1 Reverberation Time Estimation

Estimating the reverberation time of aroom or ahall is
relatively easy if the decay curve behaves regularly and
the noise floor is low enough. In practice the case is often
quite different. Here we demonstrate the behavior of the
nonlinear optimization method in an example where the
measured impulse response includes an initial delay, an
irregular initial part, and a relatively high measurement
noise floor.

Fig. 6 depicts three different cases of fitting the decay-
plus-noise model to this case of a control room with a
short reverberation time. In Fig. 6(a) the fitting is applied

5
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Fig. 5. Decay parameter estimation errors for Lundeby et al.
method as a function of SNR. (a) Decay time estimation error in
% with truncated Schroeder integration but without noise com-
pensation. (b) Initial level estimation error in dB. (c) Noise floor
estimation error in dB.
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to the entire decay curve, including the initial delay, and
the resulting model is clearly biased toward too long a
reverberation time. In Fig. 6(b) the initia delay is
excluded from model fitting, and the result is better.
However, after the direct sound there is a period of only
little energy during the first reflections prior to the range
of dense reflections and diffuse response. If the reverber-
ation time estimate is to describe the decay of this diffuse
part, the case of Fig. 6(c), with afitting starting from about
30 ms, yields the best match to reverberation decay,'* and
the approaching noise floor is also estimated well.

5.2 Modeling of Low-Frequency Room Modes

The next case deals with the modeling of the low-
frequency modes of a room. Below a critical frequency
(the so-called Schroeder frequency) the mode density is
low and individual modes can be decomposed from the
measured room impulse response. The task here was to
find the most prominent modes and to analyze their modal
parametersf,, and t,,, the frequency and decay parameters,
respectively. The case studied was a hard-walled, partially
damped room with moderate reverberation time (= 1 sec-
ond) at mid and high frequencies, but much longer decay
times at the lowest modal frequencies. The following pro-
cedure was applied:

¢ A short-time Fourier analysis of the measured impulse
response was computed to yield the time—frequency
representation shown in Fig. 7 as awaterfall plot.

« At each frequency bin (1.3-Hz spacing is used) the dB-
scaled energy—time decay trajectory was fitted to the
decay-plus-noise model with the nonlinear optimization
technigue to obtain the optimal decay parameter .
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Fig. 6. Decay-plus-noise model fitting by nonlinear optimization
to a room impulse response. (a) Fitting range includes initia
delay, transient phase, and decay. (b) Fitting includes transient
phase and decay. (¢) Fitting includes only decay phase. Esti-
mated T, values are given.
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» Based on decay parameter values and spectral levels,
a rule was written to pick up the most prominent
modal frequencies and the related decay parameter
values.

In this context we are interested in how well the decay
parameter estimation worked with noisy measurements.
Application of the nonlinear optimization resulted in
decay curvefits, some of which areillustrated in Fig. 8, by
comparing the original decay and the decay-plus-noise
model behavior. For al frequencies in the vicinity of a
mode the model fits robustly and accurately.1?

5.3 Analysis of Decay Rate of Plucked String
Tones

A model-based synthesis of string tones can produce
realigtic guitar-like tones if the parameter values of the
synthesis model are calibrated based on recordings [2].
The main properties of tones that need to be analyzed are
their fundamental frequency and the decay time of al har-
monic partials that are audible. While estimating the fun-
damenta frequency is quite easy, measurement of the
decay times of harmonics (= modes of the string) is com-
plicated by the fact that they all have a different rate of
decay and aso the initial level can vary within a range of
20-30 dB. There may also be no information about the
noise floor level for all harmonics.

One method used for measuring the decay times is
based on the short-time Fourier analysis. A recorded sin-
gle guitar tone is dliced into frames with a window func-
tion in the time domain. Each window function is then
Fourier transformed with the fast Fourier transform using
zero padding to increase the spectral resolution, and har-
monic peaks are hunted from the magnitude spectrum
using a peak-picking algorithm. The peak values from the
consecutive frames are organized as tracks, which corre-
spond to the temporal envelopes of the harmonics. Then it
becomes possible to estimate the decay rate of each har-
monic mode. In the following, we show how this works
with the proposed decay parameter estimation algorithm.
Finaly the decay rate of each harmonic is converted into
acorresponding target response, which is used for design-
ing the magnitude response of a digital filter that controls
the decay of harmonicsin the synthesis model.

Fig. 9 plots three examples of modal decay analysis of
guitar string harmonics (string 5, open string). Harmonic
envelope trgjectories were analyzed as described. The
decay-plus-noise model was fitted in a time window that
started from the maximum value position of the envelope
curve. In Fig. 9(a) the second harmonic shows a highly
regular decay after aninitial transient of plucking, whereby
decay fitting is amost perfect. Fig. 9(b), harmonic 24,

111n this example, decay parameter analysis is applied to the
entire frequency range of the impulse response. In practice it is
computed as afunction of frequency, that is, applied to octave or
one-third-octave band decay curves.

12To obtain the best frequency resolution it may be desirable
to replace short-time spectral analysis with energy-decay curves
obtained by backward integration and the model of Eq. (16) with
a corresponding formulation derived from Xiang's formula, Eq.
™.

875



KARJALAINEN ET AL.

depicts a strongly beating decay, where probably the hor-
izontal and vertical polarizations have a frequency differ-
ence that after summation resultsin beating. Fig. 9(c), har-
monic 54, shows a trgjectory where the noise floor is
reached within the analysiswindow. In all cases shown the
nonlinear optimization works as perfectly as a simple
decay model can do.

As can be concluded from Fig. 9(b), astring can exhibit
more complicated behavior than simple exponential
decay. Even more complex is the case of piano tones
because there are two to three strings slightly off tune, and
the envelope fluctuation can be more irregular. Two-stage
decay isaso common wheretheinitial decay isfaster than
later decay [22].
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Fig. 8. Fitting of decay-plus-noise model to low-frequency
modal data of room (see Fig. 7). (8) At 40-Hz. (b) At 104 Hz.
(c) At 117 Hz (off-mode fast decay). — — — measured; —— mod-
eled.
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Inall such casesamore complex decay model is needed
to achieve a good match with measured data. Such tech-
niques are studied in [17].

6 SUMMARY AND CONCLUSIONS

An overview of modal decay analysis methods for noisy
impulse response measurements of reverberant acoustic
systems has been presented, and further improvements
were introduced. The problem of decay time determina-
tion isimportant, for example, in room acoustics for char-
acterizing the reverberation time. Ancther application
where a similar problem is encountered is the estimation
of string model parameters for model-based synthesis of
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Fig. 9. Examples of moda decay matching for harmonic com-
ponents of guitar string. (a) Regular decay after initial transient.
(b) Strongly beating decay (double mode). (c) Fast decay that
reaches noise floor. — — — measured envelope; —— optimized
mode! fit.
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plucked string instruments.

It is shown that the developed decay-plus-noise model
yields highly accurate decay parameter estimates, outper-
forming traditional methods, especially under extreme
SNR conditions.

There exist other methods, such as AR modeling, that
show potential in specific applications. Challengesfor fur-
ther research are to make modal decay methods (with an
increased number of parameters) able to analyze complex
decay characteristics, such as double decay behavior and
strongly fluctuating responses due to two or more modes
very close in frequency.

A Matlab code for the nonlinear optimization of decay
parameters, including data examples, can be found at
http://ww.acoustics.hut.fi/software/decay.
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