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In audio signal processing, the aim is the best possible sound quality for a given com-
putational complexity. For this, taking into account the logarithmic frequency resolution of
hearing is a good starting point. The present paper provides an overview on warped, Kautz, and
fixed-pole parallel filters and demonstrates that they are all capable of achieving logarithmic-
like frequency resolution, providing much more efficient filtering or equalization compared to
straightforward finite impulse response (FIR) or infinite impulse response (IIR) filters. Besides
presenting the historical development of the three methods, the paper discusses their relations
and provides a comparison in terms of accuracy, computational requirements, and design
complexity. The comparison includes loudspeaker–room response modeling and equalization
examples.

0 INTRODUCTION

Modeling or equalizing a given transfer function is one
of the most often used applications of digital filters in the
field of audio. A typical example is to correct the non-
ideal frequency response of loudspeakers, ranging from
speakers in mobile devices, computer speakers, and car
audio to large-scale public address systems [1, 2]. Often
the transfer function of the room is also equalized together
with the loudspeaker [3–6]. Other applications include the
modeling of the same systems for simulation purposes [7,
8], modeling and equalization of headphones [9], modeling
of head-related transfer functions for 3D audio [10–12],
or the synthesis of musical instrument sounds [13–15], to
name a few. For all these applications, a digital filter that
achieves the best sound quality at a given computational
cost has to be designed.

As in audio, the final judge of quality is the human ear;
it seems logical to take into account some of the proper-
ties of the auditory system during filter design. One such
property that has been used since the early times of au-
dio is the logarithmic-like frequency resolution of hearing.
For example, graphic equalizers that are used to manually
tune the response of an audio system or change the tim-
bre of sound recordings have bands with center frequencies
evenly distributed in the logarithmic scale.

Moreover, audio transfer functions are almost always
displayed in a logarithmic frequency scale and they are
often smoothed to some fractional octave resolution. Note
that traditionally smoothing has been applied to magnitude
responses only, but with digital processing it has become
possible to smooth the complex frequency responses, with
the advantage that a smoothed impulse response can be
reconstructed from the smoothed transfer function [16, 3].

It is now a common practice to design loudspeaker and
room equalizers based on the logarithmically smoothed re-
sponse instead of the original. This is not only motivated
by perceptual principles, but also coming from the fact the
fine details of the original response are highly position-
dependent. Therefore, equalizing this overly detailed re-
sponse for one measurement point usually worsens the re-
sponse at other listening positions, an artifact greatly re-
duced by proper smoothing prior to filter design [17, 3,
6].

As a result, when designing a digital filter for audio
purposes, it seems logical to design the filter so that the error
is distributed evenly in the logarithmic scale, and indeed,
this is the approach most often taken in the literature when
designing filters for audio applications.

Note that various auditory frequency scales exist, like the
Bark, mel, or Equivalent Rectangular Bandwidth (ERB)
[18, 19] scales (which are all actually quite close to the
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logarithmic scale) that are sometimes used for audio appli-
cations. Since in audio the logarithmic scale is by far the
most commonly used, the examples of this paper will use
the logarithmic scale. Nevertheless, all the discussed meth-
ods can be parameterized so that they allow filter design on
frequency scales other than logarithmic.

0.1 Limitations of General Purpose Filter Design
Techniques

Note that the term filter design is often used in a strict
sense for designing low-pass, high-pass, band-pass, or
band-reject filters with a certain passband ripple and stop-
band attenuation [20, 21]. In this work, however, the term
filter design is used as a general method for approximating
an arbitrary impulse response or frequency response.

Modeling or equalizing a transfer function by a finite
impulse response (FIR) or infinite impulse response (IIR)
filter is a common task in many fields of digital signal
processing. Therefore, a wide range of filter design tech-
niques exist that at first glance should be also appropriate
for audio applications. However, these general filter design
methods have an important property that makes them less
than optimal for audio. Namely, they have linear frequency
resolution, meaning that the error of the filter is distributed
evenly in the linear frequency scale. Linear frequency res-
olution is inherent in FIR filters, since their frequency re-
sponse is given as the discrete Fourier transform (DFT) of
their impulse response, leading to a transfer function vector
with linearly spaced frequency bins. Thus, the frequency
resolution �f is directly determined by the length of the
filter N and sampling frequency fs, given as the resolution
of the DFT: �f = fs/N [note that smaller �(f) means higher
resolution].

Also, many IIR filter design algorithms (e.g., Prony [20]
and Steiglitz-McBride [22]) minimize the error between
the target impulse response and filter response in the mean
squared sense, which, by Parseval’s theorem, is equivalent
to minimizing the mean squared error between the target
and filter frequency response in a linear frequency scale.
Some frequency-domain IIR filter design methods allow
the use of a weighting function (e.g., the frequency-domain
Steiglitz-McBride algorithm [23] or invfreqz function
in MATLAB [24]), or their target frequency scale can be
made logarithmic instead of linear. So in theory, it should
be feasible to achieve a logarithmic frequency resolution
by these methods. However, the logarithmic scale is so
distorted compared to its linear counterpart that this is not
a viable solution in practice, as has also been noted in [25].

The following examples will demonstrate the difficul-
ties of achieving logarithmic frequency resolution with
general IIR filter design methods. The example case is
modeling a loudspeaker–room response. In Fig. 1(a) a
100th-order IIR filter is designed by the frequency-domain
Steiglitz-McBride algorithm [23]. The target is a measured
loudspeaker–room response. The target is made minimum-
phase to ease filter design; this is a common practice in
audio because by giving up the perceptually less important
phase specification, better magnitude match is achieved

when designing IIR filters. The target points are linearly
distributed in frequency: 10,000 points from 0 Hz to half of
the sample rate fs/2 = 22,050 Hz. Note that the sample rate
fs = 44,100 Hz is one of the most commonly used in audio,
and this sample rate will be used for all the examples of
this work. Because of the linear distribution of target fre-
quency points, it is expected that the error will be linearly
distributed in frequency. This is indeed visible in the left
column of Fig. 1(a), where the filter response (thick solid
line) follows the target (thin gray line) by the same accuracy
for all frequencies, which is also indicated by the fact that
the frequencies of the filter poles are evenly distributed in
the linear frequency scale [see the crosses in the left side
of Fig. 1(a)]. When the same curves are plotted in a log-
arithmic scale in the right column of Fig. 1(a), a different
picture can be seen, and the lack of modeling ability at low
frequencies is immediately apparent.

The next step is to apply frequency weighting. In the
example of Fig. 1(b), a weighting of W(f) = 1/f2 is used;
otherwise, the design is the same as for Fig. 1(a). (Note that
W(f) is limited at f = 20 Hz to avoid the very large weights
at the otherwise irrelevant infrasonic frequencies.) It can be
seen in the logarithmic scale Fig. 1(b) (right column) that
the fit is only slightly improved at low frequencies, which
is quite surprising because the lowest frequencies get 106

times larger weight in the error compared to the highest
ones.

As a next trial, the filter design is based on a target re-
sponse whose frequency points are logarithmically spaced.
In Fig. 1(c), the target (thin gray line) was resampled to
a logarithmic scale with 100 bins per octave from 20 Hz
to fs/2 = 22,050 Hz, giving 1,011 specification points. No
weighting is used, because the logarithmic resampling of
the frequency grid already ensures that the error is mini-
mized in the logarithmic scale. Perhaps somewhat surpris-
ingly, as shown by the practically unchanged low frequen-
cies in Fig. 1(c) compared with Fig. 1(a), the inaccuracy
in the low frequencies persists, and the design shows no
visible improvement.

Finally, the logarithmic spacing of the target frequency
points is kept, but logarithmic smoothing is also applied,
which, in practice, removes the details at high frequencies
in favor of placing more effort on the low frequencies,
which are given more importance on a logarithmic scale. In
Fig. 1(d), a sixth-octave smoothing has been used, and it is
apparent in the right column of Fig. 1(d) that the resolution
of the target (thin gray line) is logarithmic, indeed. Although
the low-frequency modeling is improved somewhat, the
results are still disappointing below 500 Hz.

From the examples it appears that although in theory
both the weighted design and the design based on a log-
arithmically spaced specification should result in a filter
with logarithmic frequency resolution—not to mention the
design based on a logarithmically smoothed target—this
is not the outcome in practice. The examples used only
the frequency-domain Steiglitz-McBride algorithm [23],
but similar results may be observed with other methods,
like invfreqz in MATLAB. This complies with the find-
ings of [25] in that traditional IIR design techniques us-
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Fig. 1. Different variations of 100th-order infinite impulse response (IIR) filter design using the frequency-domain Steiglitz-McBride
algorithm. The minimum-phase loudspeaker–room response is displayed by thin gray lines, and the modeled responses by thick solid
lines. The versions include designs based on linearly spaced target frequency points (a) without weighting and (b) with 1/f2 weighting,
(c) a design using logarithmically spaced target frequency points, and (d) using a logarithmically smoothed target response. The same
responses are plotted in linear (left column) and logarithmic (right column) frequency scale. The crosses below the corresponding
magnitude responses indicate the pole frequencies of the filters. The curves are offset for clarity.

ing weighted least-squares minimization may fail to con-
verge when the target frequency points are logarithmically
spaced.

The reasons for this are most probably of numerical na-
ture. Logarithmic frequency resolution would require a very
high pole density at low frequencies with poles near the unit
circle, and this cannot be implemented by direct form IIR
filters even at double precision. Traditional IIR filter design
algorithms estimate the parameters of a direct form IIR
filter; they thus cannot give such a set of coefficients that
would lead to the desired high pole density at low frequen-
cies, because such a set of coefficients does not exist in the
space of available numbers because of finite precision.

0.2 Specialized Filter Structures for Achieving
Logarithmic Frequency Resolution

Recognizing these limitations, specialized IIR filter de-
sign techniques that allow a more flexible distribution of
modeling detail as a function of frequency have been de-
veloped. It is interesting to note that all these methods use
special filter structures instead of the direct (rational) form
used for general purpose IIR filters, and the filters are de-
signed directly in these special forms. This work will focus
on warped [26], Kautz [27], and fixed-pole parallel filters
[28].

It has to be mentioned that another way to address the
problem of logarithmic frequency resolution comes from
manually tuned graphic or parametric equalizers that ex-
ist from the early times of audio. Automatic techniques
have been developed that iteratively tune the parameters of
parametric equalizers by a nonlinear optimization process
(see, e.g., [2, 29, 30]). This approach is advantageous when

there is a need to manually fine-tune the filter response by
listening, since the parameters of the equalization filters
are perceptually meaningful and well understood by sound
engineers.

Also, in automatically tuned parametric equalizers inter-
polation between different filter settings is relatively easily
achieved. A drawback is that the special form of the filter
sections reduces the degrees of freedom (center frequency,
Q-factor, and gain instead of the four coefficients of a gen-
eral second-order section) and thus may result in lower
accuracy for the same filter order (see [31] and Fig. 3 for
a comparison example). Additionally, these techniques al-
low magnitude equalization only; while warped, Kautz or
parallel filters are also able to model or equalize the phase
behavior if desired. Therefore, the automatic tuning of para-
metric equalizers will not be further discussed here. For an
overview, the reader is referred to [30].

1 WARPING

The earliest perceptually motivated design technique is
based on frequency warping. The idea can be traced back
to the paper of Constantinides [32], which proposes the
substitution of unit delays in digital filters with all-pass
filters in order to change the filter type. Such a transfor-
mation can be low-pass–low-pass (change in cut-off fre-
quency), low-pass–high-pass, low-pass–band-pass, or low-
pass–band-reject, similarly to the spectral transformations
used in the design of analog filters.

The first application of the all-pass transform for achiev-
ing nonlinear frequency resolution was proposed by Oppen-
heim et al. [33], where a non-uniform DFT was obtained
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Fig. 2. The frequency mapping function ν(ϑ) of Eq. (2) for various
warping parameters.

by passing the input signal through an all-pass chain and
using the outputs of the stages as the input of an ordinary
FFT operation. Strube [34] has applied frequency warping
for approximating the frequency resolution of the human
auditory system in linear predictive coding of speech.

The use of frequency warping as a means of approxi-
mating logarithmic frequency resolution for IIR filters was
proposed in [24, 25], and an extensive overview on the
subject was presented in [26].

1.1 The Effect of Warping
The basic idea of warped filters is that the unit delay z−1

of traditional FIR or IIR filters is replaced by an all-pass
filter:

z−1 ← D(z) = z−1 − λ

1 − λz−1
. (1)

The transformation of the frequency axis is equal to the
phase response of the first-order all-pass filter, resulting in
the frequency mapping

ϑ̃ = ν(ϑ) = arctan
(1 − λ2) sin(ϑ)

(1 + λ2) cos(ϑ) − 2λ
, (2)

where ϑ is the original and ϑ̃ is the warped angular fre-
quency in radians [26]. This transformation is displayed for
various λ values in Fig. 2.

Accordingly, a filter originally having the transfer func-
tion of H(ϑ) will have the transfer function of H(ν(ϑ)) after
substituting its delay elements by the first-order all-pass fil-
ter of Eq. (1). For increasing the resolution at low frequen-
cies, which is required for achieving a logarithmic scale,
positive λ values are used. It can be seen in Fig. 2 that
in this case, the region around zero frequency will span a
much larger frequency region in the warped domain, which
means increased resolution.

The change of the frequency resolution is related to the
slope of the mapping function in Fig. 2, that is, the derivative

Fig. 3. The change of frequency resolution due to warping: (a)
� f̃ according to Eq. (3) for various warping parameters and (b)
“logarithmic resolution” � f̃ / f . The resolution prior to warping
is �f = 1 in both figures. Smaller values correspond to a higher
resolution.

of Eq. (2). The steeper the slope, the larger the increase in
frequency resolution is. Accordingly, if an FIR or IIR filter
has a local resolution described by �f(f), then its warped
variant will have the resolution characterized by

� f̃ ( f ) = 1 + λ2 − 2λ cos(ϑ)

1 − λ2
� f, (3)

where ϑ = 2πf/fs [35]. For FIR filters, �f = fs/N, where
N is the filter order. For IIR filters, such an exact number
cannot be computed; nevertheless, Eq. (3) still shows how
the resolution is mapped when the IIR filter is implemented
using all-pass filters instead of unit delays.

The relative resolution is shown in Fig. 3(a) for various
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Fig. 4. The frequency response of a 100th-order finite impulse
response filter with random coefficients (a) and the same filter
having its unit delays replaced by all-pass filters of the form Eq.
(1) with (b) λ = 0.5 and (c) λ = 0.75.

λ values, and the dotted line λ = 0 corresponds to no
warping. The plot was computed using Eq. (3) with �f =
1 and fs = 44.1 kHz. It can be seen in Fig. 3(a) that the
warped implementations with λ > 0 increase the resolution
(decrease � f̃ ) at low frequencies, at the expense of lower
resolution (larger � f̃ ) at high frequencies. This tradeoff
is understandable because the degrees of freedom in the
filter are unchanged; thus, an improvement at a specific
frequency band will lead to poorer performance at another
band.

Since the aim is to approximate logarithmic frequency
resolution, it makes sense to plot the same curves divided
by frequency. Accordingly, in Fig. 3(b), � f̃ ( f )/ f is plotted
for �f = 1. Again, the dotted line with λ = 0 shows what
happens with an ordinary (not warped) FIR or IIR filter,
and a logarithmic frequency resolution would correspond
to a horizontal line in the figure. It can be seen that although
none of the λ values achieve fully logarithmic resolution
(none of the curves are horizontal lines), there are some
frequency bands for each λ where this is relatively well
achieved.

The relation of warping to psychoacoustic scales (Equiv-
alent Rectangular Bandwidth [ERB], Bark, and Green-
wood) is discussed in [26]. Additionally, [18] has given
an analytical expression for λ as a function of sampling
rate to match the Bark scale. However, similarly to the log-
arithmic scale, an exact match is not possible because of
the limited degrees of freedom (a single λ parameter).

The warping effect is demonstrated in Fig. 4, where Fig.
4(a) displays the original frequency response of an arbi-
trary FIR filter having random coefficients and Figs. 4(b)
and 4(c) display the filter response when the unit delays
are exchanged for first-order all-pass filters with λ = 0.5
and λ = 0.75, respectively. It can be seen in Fig. 4(a) that
the original FIR filter has even (linear) resolution, that is,
the detail is evenly distributed in the linear frequency scale.
However, when frequency warping is applied, the transfer

function gradually shifts toward lower frequencies with in-
creasing λ, meaning that the level of detail is higher at low
frequencies compared to high frequencies.

2 FILTER DESIGN

The basic idea of warped filter design is that the filter
specification in the time-domain or frequency-domain is
pre-distorted with the inverse of the warping effect of the
filter. Then any traditional filter design technique can be
used to design an FIR or IIR filter, and finally when the
filter is implemented by using first-order all-pass elements,
the filter response is mapped back to the right frequencies.
A very appealing property of warped filters is that the em-
bedded filter design step is the same as for ordinary FIR or
IIR filters.

2.1 Frequency-Domain Design
The inverse mapping ν−1(ϑ̃) is defined so that ϑ =

ν−1(ν(ϑ)). If the mapping function was computed by using
λ in Eq. (2), then the inverse mapping could be obtained by
using −λ in the same function Eq. (2) [26].

The steps of filter design are the following:

1. Pre-warping of the target frequency response.
The filter specification is transformed by the inverse
mapping function ν−1(ϑ̃). Mathematically, this map-
ping is described by

H̃t(ϑ̃n) = Ht(ν
−1(ϑ̃n)). (4)

In practice this can be done by some suitable in-
terpolation, where there is direct control over the
density of the target frequency points in the warped
domain. A simpler alternative solution is to move the
original specification points Ht(ϑn) to the frequen-
cies ϑ̃n = ν(ϑn) but leave their magnitude and phase
values unchanged.

2. Frequency-domain filter design. An FIR or IIR fil-
ter is designed based on the pre-warped target H̃t(ϑ̃)
by any of the available filter design methods, just
as with ordinary FIR or IIR filters. This leads to the
filter H̃ (ϑ̃).

3. Filter implementation. This is actually not part of
the design process, but when the warped filter is im-
plemented by substituting the unit delays of the FIR
or IIR filter designed in step 2 by the first-order all-
pass filters, the frequency response of the filter will
be mapped back to match that of the original speci-
fication. Thus, the transfer function is automatically
shifted from H̃ (ϑ̃) to H̃ (ϑ) so that

H (ϑ) = H̃ (ν(ϑ)). (5)

The steps of the filter design are illustrated by
a minimum-phase loudspeaker–room response model-
ing example. The sixth-octave smoothed version of a
loudspeaker–room response is shown in Fig. 5(a) in the
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Fig. 5. Frequency warping of a smoothed loudspeaker response:
(a) original response plotted in logarithmic scale, (b) the same
response plotted in linear scale, and (c) the frequency response
pre-warped using λ = −0.95, again in linear scale.

logarithmic scale, where the even distribution of detail is
apparent. When shown in the linear scale in Fig. 5(b), the
low-frequency detail is concentrated to a very narrow re-
gion, which would be impossible to model with traditional,
linear frequency resolution filters. The response after pre-
warping with λ = −0.95 is displayed in Fig. 5(c) in linear
frequency scale, showing a distribution of detail quite sim-
ilar to the logarithmic plot Fig. 5(a).

Next, a 32nd-order IIR filter is designed based on the
warped specification by the use of the frequency-domain
Steiglitz–McBride method [23]. The filter response H̃ (ϑ̃)
is shown by a solid line in Fig. 6(a) together with the target
H̃t(ϑ̃) with a thin line [this is the same as Fig. 5(c)]. It can be
seen that the filter follows the loudspeaker–room response
very accurately.

When the IIR filter is implemented using all-pass ele-
ments in place of the unit delays, its frequency response
gets automatically de-warped. This is shown by the solid
line in Fig. 6(b) together with the target response (thin line).
The same filter response H(ϑ) is displayed in the logarith-
mic scale in Fig. 6(c), showing a very good match.

2.2 Time-Domain Design
The steps of the design are the following:

1. Pre-warping of the target impulse response. In
the time domain, the design of warped filters starts
with warping the target impulse response ht(n) by
the use of an all-pass chain with −λ [26]. This is
done in practice by sending a unit pulse to the input
of a warped FIR (WFIR) filter having −λ warping
parameter in the all-pass sections. The filter coeffi-
cients are set to be equal to the original target impulse
response bn = ht(n), and the output of the filter is the
pre-warped target response h̃t(n). Note that a finite

Fig. 6. Warped infinite impulse response (IIR) filter design based
on a smoothed loudspeaker response: (a) the filter response de-
signed based on the pre-warped target, (b) the filter response after
substituting the unit delays with first-order all-passes (λ = 0.95),
and (c) the same response plotted in logarithmic scale. The thick
lines show the frequency response of the 32nd-order IIR filter, and
the thin lines display the target response.

target impulse response ht(n) results in a pre-warped
target h̃t(n) of infinite length, since it is the sum of
the responses of (all-pass) IIR filters.

2. Time-domain filter design. WFIR filters can be
simply obtained by truncating or windowing the
warped target response h̃t(n), just as what would be
done when modeling an infinite impulse response
with a finite length filter. Similarly, warped IIR
(WIIR) filters are designed by traditional filter de-
sign algorithms (e.g., linear predictive coding, Prony,
and Steiglitz-McBride) using this pre-warped h̃t(n).

3. Filter implementation. When the filter designed in
step 2 is implemented with first-order all-pass filters
in place of the unit delays, its impulse response is
automatically mapped back to be in accordance with
the original (un-warped) target impulse response.

The steps of the time-domain design are illustrated in Fig.
7 for modeling a piano soundboard response. The target im-
pulse response is displayed in Fig. 7(a). After pre-warping,
shown in Fig. 7(b), the low-frequency content gets com-
pressed toward the beginning of the response, whereas the
high-frequency content stretches out. Then, as the simplest
example of warped filter design, a WFIR filter is obtained
by truncating the pre-warped response to N = 200 samples,
displayed in Fig. 7(c). When implemented as a WFIR filter
with first-order all-pass filters in place of the unit delays,
the response stretches back to match the original target,
shown in Fig. 7(d). It can be seen that the filter response
Fig. 7(d) follows the target Fig. 7(a) at high frequencies
only in the beginning of the response, whereas at low fre-
quencies, it models entirely. This is expected because WFIR
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Fig. 7. Time-domain warped finite impulse response (WFIR) fil-
ter design based on a piano soundboard response: (a) target im-
pulse response, (b) target response after pre-warping (λ = −0.7),
(c) WFIR coefficients given as the first 200 samples of the pre-
warped response, and (d) impulse response of the WFIR filter
implemented with λ = 0.7.

filter design can be essentially considered as the frequency-
dependent windowing of the target impulse response [36].

3 FILTER DESIGN EXAMPLES

Fig. 8 shows various warped filter designs based on the
same sixth-octave smoothed loudspeaker–room response
where the standard IIR filter design methods failed to pro-
vide logarithmic frequency resolution in Fig. 1(d). The first
three curves Fig. 8(a)–8(c) correspond to WFIR filters with
various λ values designed by truncating the warped impulse
response. It can be seen that increasing λ shifts the region
with detailed modeling in accordance with the resolution
curves of Fig. 3(b). It can also be seen that none of the λ

values provide even distribution of the modeling accuracy
in the logarithmic frequency scale.

Figs. 8(d)–8(f) display WIIR filter designs using the
Steiglitz-McBride method [22] with the same λ values as
for the WFIR filters. Here again, increasing λ shifts the
region of accurate modeling to low frequencies. Compared
to the WFIR examples, the WIIR filters provide a better fit
because they can redistribute the modeling detail by their
poles. Coming from this, the region of accurate modeling is
wider than for WFIR filters. However, there is still no such
λ value where the accuracy is evenly distributed in the full
audio bandwidth.

Fig. 8. Modeling a sixth-octave smoothed minimum-phase
loudspeaker–room response with (a)–(c) 32nd-order warped finite
impulse response (WFIR) filters and (d)–(f) 32nd-order warped
infinite impulse response (WIIR) filters using various warping pa-
rameters λ = 0.5, 0.8, 0.95. The target response is displayed by
thin lines, and the filter responses are shown by thick lines. The
curves are offset for clarity.

4 IMPLEMENTATION

Warped filters can either be implemented as special fil-
ter structures incorporating all-pass elements or be “de-
warped” to traditional direct-form, cascade, or parallel re-
alizations.

4.1 Implementation With Special Filter
Structures

The WFIR filters have a similar structure to FIR filters,
but the unit delays are replaced by the all-pass filter D(z)
as in Eq. (1). That is, the WFIR filter is an all-pass chain,
where the signals between the first-order all-pass blocks
are tapped and weighted by the FIR coefficients bk. This
is displayed in Fig. 9(a). Because of the all-pass elements,
WFIR filters are actually IIR filters, and only their structure
and design resemble that of FIR filters [26].

In contrast to WFIR filters, the implementation of WIIR
filters is less straightforward. This is because for WIIR
filters, the replacement of unit delays by D(z) leads to
delay-free loops, and the filter structure has to be mod-
ified for practical implementation [37–40]. For example,
[38] proposes a simple algorithm to compute the denom-
inator coefficients of the WIIR filter. With this technique,
the all-pass structure is preserved; only the first all-pass
filter is replaced by a first-order low-pass filter. In [40], an
alternative realization is proposed, which fully preserves
the all-pass structure of the filter network. This structure
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Fig. 9. Warped finite impulse response (a) and warped infinite
impulse response (b) implementation using special filter structures
[1].

is displayed in Fig. 9(b). Because of the specialized filter
structures, WFIR and WIIR filters typically require two to
four times higher computational time on digital signal pro-
cessors compared with normal FIR and IIR filters of the
same order [26].

4.2 De-Warping to Direct-Form Filters
Substituting the first-order all-pass transfer function Eq.

(1) into the transfer function of the FIR or IIR filter leads
to a direct-form IIR filter that can be implemented much
more efficiently compared to the special warped structures
[37, 24, 26]. The disadvantage of de-warping the filter to
a direct-form realization is that it may lead to numerical
issues (instability, transfer function errors, and increased
quantization noise) because of pole clustering at low fre-
quencies. It has been found that such problems may arise
above filter orders of 20–30 even when using double preci-
sion floating point arithmetic [26].

4.3 De-Warping to Cascade or Parallel Sections
Another, numerically better-behaving option is to de-

warp the filter to a cascade or parallel second-order struc-
ture. The idea is to first break up the transfer function of
the warped filter to series or parallel second-order sections
and then de-warp the sections separately [39]. Finally, the
filter is implemented in this series or parallel form.

Whereas [39] presents the formulas of de-warping a
second-order section, in [41] the problem is addressed by
first finding the poles p̃k and zeros m̃k of the WIIR filter
and then de-warping them by the expression

pk = p̃k + λ

1 + λ p̃k
, mk = m̃k + λ

1 + λm̃k
. (6)

Finally, the filter is implemented as a series of second-order
sections, computed from the de-warped poles pk and zeros
mk [41]. De-warping to second-order sections is a very ef-
fective way of implementing warped filters because it leads
to the same computational complexity as de-warping to
direct-form filters but can also be used with high filter or-
ders (the numerical problems coming from pole clustering
are avoided).

4.4 Extensions of Basic Warping Techniques
It has been seen in Fig. 3(b) that there is no single λ value

that would result in a constant resolution in the logarithmic
scale. On the contrary, each λ focuses the resolution around
a certain frequency region. Therefore, a straightforward
development of the warped filter concept is to use different
warping parameters for the different frequency regions.

4.4.1 Combination With Traditional FIR or IIR
Filters

A special case of multi-band warping is when one of the
bands is a traditional FIR or IIR filter (that is, for that band
λ = 0). This is motivated by the fact that straightforward
FIR and IIR filters can be implemented more efficiently
compared to their warped counterparts. Since the resolution
of traditional FIR and IIR filter design methods is linear,
they are best suited for modeling or equalization of the
high-frequency region of the transfer function. This can also
be deduced from Fig. 3(b) showing that traditional filters
(dotted line) have improved logarithmic resolution (smaller
�f/f) as frequency increases. Such a combined warped and
linear equalizer was presented in [42]. The frequency band
is split to two by a crossover network, which includes a low-
pass and high-pass filter. The high-frequency part of the
signal is processed by an FIR filter, and the low-frequency
part by a WFIR filter. A similar approach has been proposed
in [35] with the important difference that the FIR and WFIR
filters are in cascade, eliminating the need for a crossover
network. A generalization of the method was presented in
[43] where, besides FIR and WFIR filters, combined IIR
and WIIR equalization is also employed.

4.4.2 Multiple Warped Filters
The first paper using multiple warped filters is [44],

which proposes the use of a three-band equalizer, where
different λ values are chosen in the three branches to maxi-
mize the warping effect for each WFIR filter. Additionally,
the middle band incorporates decimation and interpolation
so that the processing is done at a reduced sample rate. The
three bands are separated by a crossover network composed
of a low-pass, band-pass, and high-pass filter.

A multi-band warping technique has also been devel-
oped for computing the pole positions of the fixed-pole
parallel filter [31], and the first part of the method can be
directly used as a WIIR filter design. In this method, the
transfer function is split to two bands, and two WIIR fil-
ters are designed with such λ values that lead to maximal
modeling resolution in the center of their corresponding
bands. Then the two WIIR filters are combined (connected
in series).

4.4.3 Custom Warping
So far, the frequency warping function Eq. (2) has been

used, which gives a limited freedom because of a single
parameter λ. Improved results were obtained by combining
multiple warped filters with different λ values. However,
a question arises if it is possible to use a truly logarith-
mic frequency mapping prior to filter design. The answer is
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that, if implementing the filter as the previously discussed
WFIR or WIIR structures, logarithmic frequency mapping
is not possible because that will lead to a warping char-
acteristic described by Eq. (2). A workaround to this is
to use pole-zero de-warping instead of the all-pass trans-
form. In “custom warping” [45], the filter design is done in
the frequency domain, starting with transforming the target
response by an arbitrary smooth and monotonic mapping
function—for the current purposes, it should be a loga-
rithmic function. Then an IIR filter is designed based on
this transformed specification, and its poles and zeros are
found. The pole and zero frequencies are transformed back
with the inverse of the logarithmic mapping function, and
the pole/zero radii are computed based on the derivative of
this inverse mapping. Finally, a post-optimization is run to
reduce the approximation errors made during de-warping,
and the filter is implemented as parallel set of second-order
filters.

5 KAUTZ AND PARALLEL FILTERS

It has been seen that warped filters (especially WIIR
filters) provide a much better approximation to logarithmic
frequency resolution compared with straightforward IIR
filters shown in SEC. 0.1. However, when the full audio
band from 20 Hz to 20 kHz has to be modeled or equalized,
a single λ parameter is insufficient because either the high or
low frequencies will lack modeling detail (see Fig. 8). This
can be improved using multiple λ values, as was outlined
in SEC. 4.4.

As a generalization, the question arises if it would be
possible to construct the WFIR and WIIR filters in such a
way that every all-pass filter has different λ values. This
question has been investigated by Tyril et al. [41], who has
proposed the use of warped individual z FIR (WizFIR) fil-
ters. No systematic procedure has been given for choosing
the different λ parameters for the various sections; rather,
they were set by trial and error, and it was found that the per-
formance is slightly improved compared with that of normal
WFIR filters. However, for the same computational com-
plexity, WizFIR filters are outperformed by normal WIIR
filters having a single λ value [41]. Thus, the use of Wiz-
FIR filters is not encouraged. The authors have also added
that the benefit in using individual λ values in WIIR filters
is doubtful because WIIR filters can have different poles
anyway.

A mathematically better founded alternative to WizFIR
filters is the use of Kautz filters, which are indeed very
similar to a WFIR filter structure with different λ values,
with an additional feature of orthonormal basis functions
[27]. Before discussing how Kautz filters can be used to
achieve logarithmic frequency resolution, the history of the
method is first reviewed.

5.1 Laguerre and Kautz Models
Traditionally, Laguerre and Kautz models were proposed

for system identification. These models reconstruct the sys-
tem response as a linear combination of orthonormal basis
functions. In the case of Laguerre models [46], the orthonor-

malization procedure is started from identical first-order
low-pass transfer functions 1/(1 − pz−1) with a pole at p.
This gives the following set of orthonormal functions:

Lk(z) =
√

1 − p2

1 − pz−1

(
z−1 − p

1 − pz−1

)k−1

, (7)

for k = 1, 2, . . .K. The term in the parenthesis corresponds to
an all-pass filter; indeed, Laguerre models lead to the same
filter structure as WFIR filters, and the only difference is the
normalization term

√
1 − p2/(1 − pz−1), which is simply

a low-pass filter at the input of the all-pass backbone.
A straightforward generalization of Laguerre filters is

when the orthonormalization process is started from first-
order low-pass filters having different poles (note that the
poles pk can also be complex). For continuous-time sys-
tems, the concept was introduced by Kautz [47], and the
corresponding discrete-time orthonormal sequences were
first presented by Broome [48]. The orthonormal polyno-
mials take the following form [27]:

Gk(z) =
√

1 − pk pk

1 − pk z−1

k−1∏
j=1

z−1 − p j

1 − p j z−1
, (8)

for k = 1, . . .K, where pk is the complex conjugate of pk.
(Note that in [27] the indexing starts from k = 0.) Again,
the filter can be implemented as a tapped all-pass backbone,
but now the poles of the filter are different. Therefore, the
first-order low-pass normalization terms

√
1 − pk pk/(1 −

pk z−1) have to be implemented separately after the tapping
points of the backbone. This is similar to the WizFIR filter
of [41] with the added first-order low-pass filters at the tap
outputs.

Eq. (8) results in complex sequences (impulse responses)
for complex poles. Also, such a model would result in a fil-
ter with complex coefficients. However, in practice, most
applications require the modeling of real impulse responses
and the use of filters with real coefficients. For such sys-
tems, complex poles always appear in complex conjugate
pairs pi and pi , and the complex pole pairs can be combined
to form second-order sections. For a pole pair pi and pi ,
a pair of real valued basis functions G+

i (z) and G−
i (z) is

obtained as follows [48, 27]:

Ai (z) = 1

(1 − p1z−1)(1 − p1z−1)
×

×
i∏

j=2

(z−1 − p j−1)(z−1 − p j−1)

(1 − p j z−1)(1 − p j z−1)

G+
i (z) = C+

i (1 + z−1)Ai (z)

G−
i (z) = −C−

i (1 − z−1)Ai (z), (9)

for i = 1, 2, . . .I. In Eq. (9), C+
i and C−

i are normalization
constants computed from the pole set pi [48, 27]. Note that
since

Ai (z) = Ai−1(z)
(z−1 − pi−1)(z−1 − pi−1)

(1 − pi z−1)(1 − pi z−1)
, (10)

each Ai(z) can be implemented by filtering the previous term
Ai−1(z) with a second-order filter, meaning that the Ai(z) part

422 J. Audio Eng. Soc., Vol. 70, No. 6, 2022 June



PAPERS WARPED, KAUTZ, AND PARALLEL FILTERS

Fig. 10. The structure of the Kautz filter with real coefficients.

can be implemented as a backbone composed of second-
order stages. Then the signal is tapped between the sections
and filtered by the first-order numerator terms C+

i (1 + z−1)
and −C−

i (1 − z−1) to obtain the outputs G+
i (z) and G−

i (z)
[48]. The total filter response is the linear combination of
these outputs with weights wk. The block diagram of the
Kautz structure in this efficient real form is displayed in Fig.
10, where ai,1 = −2Re{pi}, ai,2 = |pi|2, bi,1 = w2i−1C+

i ,
and bi,2 = −w2i C

−
i .

Both for Laguerre and Kautz models, the impulse re-
sponse of a system ht(n) is modeled as a linear combination
of basis functions xk(n), which are obtained as the inverse–z
transform of Lk(z) for Laguerre and G+

i (z) and G−
i (z) for

Kautz filters:

h(n) =
K∑

k=1

wk xk(n), (11)

where wk is the weights. The goal is to estimate wk such that
the model response h(n) is closest to the target ht(n). Since
the xk(n) sequences are orthonormal, the optimal solution
in the mean-squared sense is given by the scalar product

wk =
N∑

n=0

ht(n)xk(n), (12)

requiring much less computations compared to solving
the usual least-squares (LS) equations required for non-
orthogonal basis functions. This complexity can be de-
creased even more by noting that the scalar product of Eq.
(12) is equivalent to convolving the time-reversed target
ht(− n) with xk(n) and taking the output for n = 0 [48, 27].
Convolution with xk(n) is actually done by filtering ht( − n)
with the same recursive Laguerre or Kautz filter structure
that is used for modeling, and wk is simply obtained by
reading the tap outputs at time n = 0.

Nowadays solving a linear LS problem is considered
as one of the simplest optimization problems; thus, the
orthonormality of Laguerre and Kautz basis functions has
lost some of its attractiveness. However, for some cases such
as adaptive filtering, orthonormality is still highly beneficial
because it leads to faster convergence [49, 50].

5.2 Kautz Filters for Audio Applications
Using Kautz filters for audio equalization was first pro-

posed by Paatero et al. [51, 27]. In these papers, the poles
of the Kautz filter are either set manually based on the
measured response or based on a (possibly warped) filter
design using a somewhat complicated procedure. This pro-
cedure adapts the Brandenstein-Unbehauen method [52]

Fig. 11. Modeling a loudspeaker–room response with a 62nd-
order Kautz filter (a) and 62nd-order parallel filter (b) having the
same set of poles (three poles per octave from 20 Hz to 20 kHz).
The pole frequencies are indicated by crosses in the bottom of
the figure. The thin gray lines show the minimum-phase target
response, and the thick lines the filter response. In (c), the thick
line is the sixth-octave smoothed version of the target (thin gray
line). The curves are offset for clarity.

to the Kautz filters, which is an iterative LS optimization
technique similar to the Steiglitz-McBride algorithm [22].
However, probably the most important step in making Kautz
filters easily usable for audio filter design was when Kar-
jalainen and Paatero [4] recognized that by setting the pole
frequencies according to a logarithmic frequency scale and
setting the pole radii as an exponentially damping sequence,
truly logarithmic frequency resolution can be achieved.

Fig. 11(a) shows a Kautz filter design when the pole fre-
quencies are distributed uniformly in the logarithmic scale:
a total of 31 pole pairs have been used, meaning three pole
frequencies per octave. It can be seen that the modeling
detail is now evenly distributed in the logarithmic scale, in
contrast to WFIR and WIIR designs shown in Fig. 8. This
can be confirmed by comparing the Kautz filter response
of Fig. 11(a) to the sixth-octave smoothed version of the
transfer function displayed in Fig. 11(c), showing a great
similarity. Since pole positioning for Kautz filters is essen-
tially the same task as for parallel filters, SEC. 6 will discuss
the topic further.

5.3 Fixed-Pole Parallel Filters
It may be concluded that Kautz filters provide an attrac-

tive way for constructing logarithmic frequency resolution
filters. However, the combined cascade-parallel nature of
the Kautz filter visible in Fig. 10 requires more computa-
tion compared with filters implemented in direct, cascade,
or parallel form for the same filter order.

A question then arises whether it is possible to keep
the direct control over frequency resolution with simpler
filter structures. The experiments of the present author have
shown that the key for such a desired performance does not
actually lie in the Kautz filter structure, but in the fixed-pole
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Fig. 12. Structure of the parallel second-order filter.

design. It has been found that if the pole set is the same as
for the Kautz filter, practically equivalent results can be
achieved if the filter is designed in a parallel second-order
form, and thus the concept of the fixed-pole parallel filter
was born [53].

Implementing IIR filters in the form of parallel second-
order sections has been used traditionally because of its
better quantization noise performance compared to direct-
form filters, similarly to series biquads [54, 21, 55]. The
parameters of the second-order sections are then determined
from the direct form IIR filters, e.g., by the partial fraction
expansion or a similar algorithm [54, 21, 56]. The novelty
of the present methodology lies in the fact that instead of
converting from a direct-form IIR filter, the parallel second-
order filter bank is designed directly, and that by the choice
of the pole frequencies, direct control over the frequency
resolution of the design is gained similarly to the Kautz
filter.

The complex form of the fixed-pole parallel filter (“par-
allel filter” in short) is actually related to decomposing a
rational transfer function H(z) = B(z)/A(z) to partial frac-
tions:

H (z) =
P∑

i=1

ci
1

1 − pi z−1
+

M∑
m=0

fm z−m, (13)

where pi is the poles, either real valued or forming conjugate
pairs, if the system has a real impulse response. The second
sum in Eq. (13) is the FIR filter part of order M. Note
that Eq. (13) assumes that there is no pole multiplicity;
otherwise terms of higher order would also appear [57].

The resulting filter can be implemented directly as in Eq.
(13), forming parallel first-order complex filters. However,
it is more practical to combine the complex pole pairs to a
common denominator resulting in a parallel set of second-
order sections with real valued coefficients:

H (z) =
K∑

k=1

bk,0 + bk,1z−1

1 + ak,1z−1 + ak,2z−2
+

M∑
m=0

fm z−m, (14)

where K is the number of second-order sections. The filter
structure is depicted in Fig. 12.

For most modeling or equalization tasks, there is no need
for the FIR part. On the other hand, for non-decaying re-
sponses where the peak of the target response is not in

the beginning, using the FIR path for the early, rising part
of the response improves modeling accuracy for a given
computational complexity [53]. Related to this, it must be
mentioned that the original complex [Eq. (13)] and real
[Eq. (14)] forms of the parallel filter were constructed so
that they are in line with the forms used in partial fraction
expansion [54, 21], with the FIR part of the impulse re-
sponse overlapping the IIR part. Meanwhile, it has turned
out that this overlap can lead to a dynamic range limita-
tion in real-world applications using limited word lengths
(e.g., 24-bit fixed-point) [58]. This can be simply avoided
by using the “delayed parallel filter,” where the IIR part is
delayed to start after the FIR response. While here, the orig-
inal (non-delayed) parallel filter design will be discussed;
the delayed parallel filter can be designed very similarly,
or its coefficients can be easily converted from those of the
non-delayed form [58].

5.4 Parameter Estimation for Parallel Filters
The filter weights bk,0, bk,1, and fm can be estimated

both in the time and frequency domains; here, the more
flexible frequency-domain variant will be outlined [59].
(For the time domain design, see [53, 28], whereas [59]
compares the time-domain and frequency-domain designs.)
Substituting z−1 = e− jϑn into Eq. (14) for a finite set of ϑn

angular frequencies yields

H (ϑn) =
K∑

k=1

bk,0 + bk,1e− jϑn

1 + ak,1e− jϑn + ak,2e− j2ϑn
+

M∑
m=0

fme− jmϑn ,

(15)

which is linear in its free parameters bk,0, bk,1, and fm. (The
coefficients ak,1 and ak,2 are constant because of the fixed
pole set.)

Because of its linearity, Eq. (15) can be written in a matrix
form

h = Mp, (16)

where p = [b1,0, b1,1, . . . bK ,0, bK ,1, f0. . .fM]T is a column
vector composed of the free parameters. The columns of
the modeling matrix M contain the transfer functions of the
second-order sections 1/(1 + ak,1e− jϑn + ak,2e− j2ϑn ) and
their delayed versions e− jϑn /(1 + ak,1e− jϑn + ak,2e− j2ϑn )
for the ϑn angular frequencies. The last columns of M
are the transfer functions of the FIR part e− jmϑn for m
= [0. . .M]. Finally, h = [H (ϑ1) . . . H (ϑN )]T is a column
vector composed of the resulting frequency response.

Now the task is to find the optimal parameters popt such
that h = Mpopt is closest to the target frequency response
ht = [H (ϑ1)t . . . Ht(ϑN )]T . If the error is evaluated in the
mean squares sense

eLS =
N∑

n=1

|H (ϑn) − Ht(ϑn)|2 = (h − ht)
H (h − ht),

(17)
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and the minimum of Eq. (17) is found by the LS solution:

popt = M+ht,

M+ = (MH M)−1MH , (18)

where M+ is the Moore-Penrose pseudoinverse, and MH

is the conjugate transpose of M. Note that M+ can be pre-
computed if the pole set (frequency resolution) is fixed.

Eq. (18) assumes a filter specification Ht(ϑn) given for
the full frequency range ϑn ∈ [− π, π]. Thus, the design
can be used for obtaining filters with complex coefficients,
since the frequency specification is not constrained to be
conjugate-symmetric. However, in most cases, the interest
is in filters with real coefficients: in this case, it must be
ensured that Ht(−ϑn) = H t(ϑn), where H t is the complex
conjugate of Ht (an alternative approach using a one-sided
specification is outlined in [59]).

A clear benefit of designing the fixed-pole parallel filter
in the frequency domain is that this allows adding different
weights to the different frequency points [59]. In this case,
the error becomes

eWLS =
N∑

n=1

W (ϑn)|H (ϑn) − Ht(ϑn)|2 =

= (h − ht)
H W(h − ht), (19)

where W(ϑn) is the weight for the ϑn frequency and W is
the weighting matrix having W(ϑn) in its diagonal and zeros
elsewhere. The minimum is obtained by the weighted-LS
(WLS) solution:

popt = (MH WM)−1MH Wht. (20)

As for the design complexity, frequency-domain design
requires significantly less computations compared with the
time-domain design when the target frequency response is
given in the logarithmic scale, and it is also numerically
better conditioned [59]. Therefore, it is advised to convert
time-domain target responses to the frequency domain be-
fore filter design.

Another advantage of frequency-domain design com-
pared with the time-domain version is that it is usable also
when only a magnitude specification is given. For that, [59]
proposes a simple iterative procedure where the design is
started from a minimum-phase target computed from the
given magnitude specification, and the phase is updated in
each iteration based on the previous filter approximation.

Note that this procedure is similar to “magnitude-
priority” filter design [60], where the iterative process is
started from the original phase specification. This tech-
nique is preferred when the phase specification is given,
but matching the magnitude has higher importance. The
method models or equalizes both the magnitude and phase
in those frequency regions where this is feasible with the
given filter order, whereas if this is not possible, it modi-
fies the phase specification to allow for a better magnitude
match.

5.5 Mathematical Equivalence of the Kautz and
Parallel Filters

Figs. 11(a) and 11(b) show Kautz and parallel filter de-
signs using the same pole set having 31 pole pairs dis-
tributed uniformly in the logarithmic scale. As can be seen,
the same filter response arises for both filters.

This can be explained by the fact that the Kautz basis
functions seen in Eq. (8) are the orthonormalized versions
of decaying complex exponentials, which are actually the
basis functions of the complex parallel filter Eq. (13). A
formal proof for the equivalence has been presented in
[28] based on the partial fraction expansion of the com-
plex Kautz basis functions Eq. (8).

If the parameters of the Kautz filter in its complex form
Eq. (8) are given in a vector w = [w1, . . . , wK ]T , the pa-
rameter vector of the parallel filter c = [c1, . . . , cK ]T in Eq.
(13) can be obtained by the matrix multiplication

c = Kw, (21)

where the conversion matrix K is given as

Ki,k = √
1 − pk pk

k∏
j=1, j �=i

1

pi − p j

k−1∏
j=1

(1 − p j pi )

for i ≤ k,

Ki,k = 0 for i > k. (22)

This allows the conversion of an already designed Kautz
filter to the computationally more efficient parallel second-
order form. Note that the parallel FIR part (fm) in Eq. (13)
is zero in this case, and the conversion assumes having no
pole multiplicity in the Kautz filter. An inverse mapping of
the parameters (parallel to Kautz conversion) is of course
also possible by using w = K−1c.

Basically, this proves that the basis functions of the par-
allel and Kautz filters span the same approximation space,
and converting between the two filters is merely a change
of basis. Therefore, approximating a target response using
any error norm (e.g., the L2 norm in LS design) will lead to
the same filter response in both cases for a given pole set
pk.

Although the complex forms of the Kautz and parallel
filters have been related, since the real forms Eqs. (9) and
(14) are mathematically equivalent to the complex ones, the
results are valid for the more practical real forms as well.
This means that pole positioning techniques developed for
the parallel filter can also be used for the Kautz filter and
vice versa. Also, the smoothing properties of the two filters
can be discussed jointly.

5.6 Controlling the Frequency Resolution:
Relations to Transfer Function Smoothing

The thick line in Fig. 11(c) shows the sixth-octave com-
plex smoothed version of the target (thin gray line). By
observing the results of parallel and Kautz filters with a
logarithmic pole distribution in Figs. 11(a) and 11(b), it is
apparent that the effect of filter design is similar to that of
fractional-octave complex smoothing of transfer functions.
This smoothing behavior has been systematically analyzed
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in [28] for the parallel filter, but it is equally valid for the
Kautz filter because of their equivalent approximation for
the same pole set.

It has been shown in [28] that for a linear (uniform) set of
pole frequencies, the impulse response of the parallel filter
can be approximated by the windowed (truncated) version
of the target impulse response. In the frequency domain, the
parallel filter response thus becomes the target frequency
response smoothed (convolved) by a sinc function. It is
also shown that if the pole density is different in different
frequency regions, the length of the time-domain window-
ing will also be different, leading to a different amount of
smoothing in the frequency domain.

It has been demonstrated in [28] that having α pole fre-
quencies per octave leads to smoothing by a sinc function
having the main lobe width of 1/α octave. The main lobe of
the sinc function is actually quite similar to a Hann window
often used in complex smoothing, and for smoothing with
a Hann window, it is the half with of the Hann window
which determines the frequency resolution [28]. As a re-
sult, placing α pole frequencies per octave is comparable to
smoothing the target response to 1/(2α) octave resolution.
This is indeed visible in Fig. 11 where having three com-
plex conjugate pole pairs per octave leads to filter responses
similar to the 6th-octave smoothed version of the target.

6 POLE POSITIONING STRATEGIES FOR KAUTZ
AND PARALLEL FILTERS

The various pole positioning techniques can be put into
two main categories, depending on the relation of the sys-
tem and model order, in other words, if one wishes to model
or equalize the system precisely or only approximately.

6.1 Pole Positioning Based on the Transfer
Function

In some cases, one wishes to model a system as accu-
rately as possible. For example, for artificial reverberation
[61] or instrument body modeling in physics-based sound
synthesis [53], one would like to keep the long decay and
reverberant character of the measured response, not only its
effect on the timbre. In this case, the original (unsmoothed)
response should be used as a target for filter design. This
will naturally require high filter orders for high-order sys-
tems, and the filter poles should correspond to system poles
for best accuracy. This is, in a way, related to the field of
system identification because the parameters of the model
have a direct connection to physical reality.

A straightforward approach is that an IIR filter is de-
signed based on the target response, and the poles of this
IIR filter are used as the poles of the parallel filter. Here the
accuracy is determined by how well the original IIR filter
design approximates the target response. As discussed in
SEC. 0, standard IIR filters have a linear frequency resolu-
tion, so for audio, one would rather design a WIIR filter,
find the poles, and de-warp them using Eq. (6). In this case,
the frequency resolution is controlled by the warping pa-
rameter, and the response of the Kautz or parallel filter is

Fig. 13. Comparison of different pole positioning techniques for
modeling a sixth-octave smoothed minimum-phase loudspeaker–
room response using a fixed-pole parallel filter. The pole posi-
tioning techniques used are (a) logarithmic pole set, (b) manual
pole positioning, and pole positioning based on (c) ripple density
and the (d) divide-and-conquer approach. Next, pole positioning
based on (e) standard warped infinite impulse response filter de-
sign, (f) the same with post-optimization, (g) custom warping,
(h) multi-band warping, and finally, (i) multi-band warping with
post-optimization. The target response is shown by thin lines. The
pole frequencies are displayed by crosses. The number of pole
pairs (or second-order sections) is 16 in all cases, giving a total
filter order of 32. The curves are offset for clarity. The square root
of the mean squared error computed in logarithmic scale is given
as e = ... for each curve.

practically the same as that of the warped filter from which
its poles originate, as will be seen later in Fig. 13(e).

This approach is suggested in [27], where the
Brandenstein-Unbehauen IIR filter design algorithm [52]
is run on the warped impulse response, and then the poles
of the resulting IIR filter are de-warped by Eq. (6) and
used as Kautz filter poles. Alternatively, other IIR filter
design techniques can be also be used for determining
the (warped) IIR filter from which the poles are taken
[53]. The present author has made various tests using the
Brandenstein-Unbehauen technique and found that it prac-
tically gives the same approximation error as the Steiglitz-
McBride method [22]. An advantage of the latter is that it is
readily available in MATLAB Signal Processing Toolbox
as the stmcb function.

SEC. 4.4 discussed that the accuracy of the WIIR fil-
ter design can be improved by using multiple λ values or
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custom warping. This improvement of course translates to
pole positioning for the parallel and Kautz filters as well.
A comparison of these techniques is given in [62], showing
that dual-band and custom warping have a similar perfor-
mance and both of them significantly outperform the pole
positioning based on a straightforward single-band WIIR
filter design. In the experience of the present author, these
methods allow estimating high-order (N ≈ 1,000) models
without problems (see, e.g., [45]). Note that at such high
orders, (warped) IIR filter design and the subsequent root
finding of the denominator may lead to a few unstable
poles; however, these poles can be discarded or flipped in-
side the unit circle before estimating the Kautz or parallel
filter weights.

Maestre et al. [63] have further developed the pole posi-
tioning method based on WIIR design by using an iterative
procedure where the poles obtained from a single-band
WIIR design using the Prony or Steiglitz-McBride tech-
nique are post-optimized with a gradient descent algorithm.
For modeling reverberant room responses that require high
filter orders (N ≈ 1,000), the technique is used in sub-bands
to keep the optimization process manageable [61].

Recently, an interesting pole positioning technique has
been presented in [8] for the application of sparse approx-
imation of highly reverberant room impulse responses by
Kautz filters. Instead of aiming at modeling all the details
of the room impulse, the proposed technique tries to fit the
most prominent resonances by iteratively testing a set of
candidate pole positions and adding the one that decreases
the approximation error the most to the final pole set. The
examples demonstrate that the method provides a stable ap-
proximation of room impulse responses with filter orders
up to the range of N ≈ 1,000. However, the pole frequencies
and damping factors cannot be estimated as accurately as
with the IIR filter design–based approaches because they
are chosen from a predefined pole set [8].

6.2 Pole Positioning Based on a Predetermined
Pole Set

In contrast to the case discussed in SEC. 6.1, one may
aim at modeling or equalizing only the most important per-
ceptual features of the transfer function (e.g., how it affects
the timbre), which is better described by its logarithmically
smoothed version, as already discussed in SEC. 0. Now one
can take advantage of the fact that the resolution of the
Kautz or parallel filter design can be directly controlled by
the pole density, as discussed in SEC. 5.6. For this, a pre-
determined (e.g., logarithmically distributed) set of poles
needs to be used based on the modeling resolution desired.
Because in this case, the poles of the filter are unrelated
to the original system, this is more like a nonparametric
approach.

For logarithmic frequency resolution, if one wishes to
achieve a result similar to 1/β octave smoothing, 2/β oc-
tave pole frequency distances are necessary. Table 1 dis-
plays the pole densities required to achieve the most typ-
ical fractional-octave resolutions used in transfer function
smoothing. It also lists the number of pole frequencies K =

Table 1. Pole densities, number of pole frequencies, and filter
orders for typical values of fractional-octave resolutions using a
predetermined pole set. The pole frequencies span ten octaves

from 20 to 20,480 Hz.

Fractional octave resolution 1 1/3 1/6 1/12 1/24

Pole frequencies per octave 1/2 3/2 3 6 12

Total no. pole frequencies 6 16 31 61 121

Filter order 12 32 62 122 242

10(β/2) + 1, assuming a design with the ten octaves of the
full audio bandwidth, and the total filter order, 2K.

In [28], a general set of pole equations is presented, which
can determine the pole radii for an arbitrary set of pole
frequencies. Once the pole frequencies fk are predefined,
the digital angular frequencies

θk = 2π
fk

fs
(23)

are computed, with fs being the sample rate.
Next, the bandwidth of the kth second-order section �θk

is computed from the neighboring pole frequencies

�θk = θk+1−θk−1

2 for k = [2, .., K − 1]

�θ1 = θ2 − θ1

�θK = θK − θK−1. (24)

Then the poles pk are obtained as

pk = e− �θk
2 e jθk . (25)

Eq. (25) sets the pole radii |pk | in such a way that the
transfer functions of the Kautz or parallel filter sections
cross approximately at their –3 dB points. For a filter having
a real impulse response, the poles must be in complex-
conjugate pairs; therefore, the pole set needs to be extended
by the complex-conjugate version pk of the poles pk.

An example design for both the Kautz and parallel filters
has been already shown having three poles per octave in
Fig. 11, leading to sixth-octave resolution as expected from
Table 1.

Of course the pole frequency series does not need to be
strictly logarithmic; for example, it is possible to obtain
higher resolution by having larger pole density at some
specific frequency regions. It is also possible to choose
the pole frequencies completely freely but still compute
the pole radii with the above Eqs. (23)–(25). This is use-
ful for manual pole positioning when the user can add or
remove poles to specific frequency regions while check-
ing the result in real time. The parallel filter homepage
(see SEC. 9) includes an interactive MATLAB/Octave script
parfiltdemo.m, where the interested reader is invited
to experiment with adding/removing poles by a click of a
mouse.
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6.3 Pole Positioning Based on the Smoothed
Response

Although using a predetermined (e.g., logarithmic) pole
set is well suited to modeling higher-order systems with
low-order filters as seen in SEC. 6.2, it is still possible to
decrease the filter order for the same accuracy. The basic
idea is that the target response is smoothed to the required
resolution (which can be different in the various frequency
regions), and then this smoothed response is used to deter-
mine the optimal pole set of the filter. For this, the most
straightforward approach is to design a WIIR filter based
on this smoothed response by any of the methods discussed
in SEC. 6.1.

Note that since the (warped) IIR filter is designed based
on the smoothed version of the target, the poles and zeros
of the Kautz or parallel filter will not have a direct con-
nection with the system poles and zeros. So in effect, this
approach is similar to that of a predetermined pole set (SEC.
6.2) with the difference that now the frequency resolution
is not controlled by the direct choice of the poles but by the
resolution of the smoothing applied to the original transfer
function. The reason why this can lead to lower filter or-
ders compared with the predetermined (e.g., logarithmic)
pole set is because some regions of the system response
may be smoother than others, and a strictly logarithmic
frequency resolution may waste some computational re-
sources at these already smooth regions. For example, a
typical loudspeaker-room response has larger deviations at
low frequencies compared to the high ones after smoothing
[see Fig. 11(c)].

In addition to the WIIR filter design variants discussed in
SEC. 6.1, it is also possible to determine the pole positions
based on the raggedness of the smoothed transfer function.
The ripple-density–based technique [62] places more poles
to those frequency regions where the transfer function has
more ripples. Although this does not provide as good ac-
curacy as the WIIR-based methods, it has the benefit of
being a significantly simpler design algorithm. Recently,
a similarly simple approach has been presented in [9] us-
ing a divide-and-conquer approach by iteratively placing
more and more poles in the regions of large deviations,
best-suited for low-order (N ≈ 10) filter design.

6.4 Pole Positioning Comparison
Here some of the pole positioning methods presented

will be compared on the same sixth-octave smoothed
loudspeaker–room response modeling example as used in
Fig. 8. The filter order is also kept the same to make the fig-
ures directly comparable. The numbers next to the curves
in Fig. 13 display the square root of the mean squared error
calculated on a logarithmic frequency grid using 100 points
per octave. Note that since the difference is computed be-
tween the complex target and filter responses, a low number
not only indicates a good match in magnitude, but in phase
as well.

Fig. 13(a) shows the modeling using a predetermined
pole set with strictly logarithmic pole positioning. The even
distribution of modeling detail in the logarithmic frequency

scale is immediately apparent. Note that when using a pre-
determined pole set, smoothing the target prior to filter
design is not necessary, as seen in Fig. 11. A smoothed
target is used here only to make the comparison with other
pole positioning approaches more coherent.

Fig. 13(b) displays the result of manual pole positioning
using the parfiltdemo.m script (see SEC. 9). It can
be seen that quite a good fit can be achieved with some
human interaction. Note that manual tuning of the poles
is much simpler than it seems because it is only the pole
frequencies that are adjusted by the user, and the pole radii
are computed automatically according to Eqs. (24) and (25).
For the present example, the author has spent about 2 min
of moving around the pole frequencies.

It is also possible to determine the pole frequencies au-
tomatically while keeping the idea of computing the pole
radii based on the distance of the neighboring pole fre-
quencies using Eqs. (24) and (25). The modeling using a
ripple-density–based pole frequency set [62] is shown in
Fig. 13(c), and Fig. 13(d) displays the result of the divide-
and-conquer approach [9]. Although the fit is improved
compared with that of a strictly logarithmic pole set [Fig.
13(a)], none of the approaches can reach the accuracy of
manual tuning.

The four methods displayed in Figs. 13(a)–13(d) are all
similar in that the pole radii are determined from the pole
frequencies by Eqs. (24) and (25). Next, more complex
approaches that optimize the pole radii independently from
the pole frequencies will be examined.

In the example of Fig. 13(e), a 32nd-order IIR filter is de-
signed by the frequency-domain Steiglitz-McBride method
[23] based on the warped version of the smoothed system
response with λ = 0.95. It can be seen in Fig. 13(e) that
the warping-based pole positioning provides an accurate
modeling from 100 Hz to 2 kHz, but it fails to provide the
same accuracy in the full audio frequency range. Note also
that the transfer function is practically the same as that of
the WIIR design of Fig. 8(f). This is expected because the
poles of a WIIR filter designed using the same λ and fil-
ter order are being used. The results of the warping-based
design with post-optimizing the poles as suggested in [63]
are shown in Fig. 13(f). The fit improves at high frequen-
cies, but the distribution of the detail is still not even in the
logarithmic scale.

The design using poles obtained by custom warping is
displayed in Fig. 13(g), showing that the frequency resolu-
tion is spread much more evenly in the logarithmic scale
compared with simple warping, and thus an excellent mod-
eling performance is achieved. In Fig. 13(h), dual-band
warping is applied. The split frequency is 500 Hz, and the
two warping parameters are λLF = 0.986 and λHF = 0.65.
The filter orders are 16 in both the low and high bands. The
performance is excellent, similarly to the custom warping
case.

Although [63] uses simple warping, of course the post-
optimization to a pole set coming from custom or dual-
band warping can also be applied. The latter is shown in
Fig. 13(i), where the post-optimization is able to correct
the inaccuracies at the crossover frequency of the dual-
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warped design [see at 500 Hz in Fig. 13(h)]. Accordingly,
custom or dual-band warping with post-optimization can
be considered the state of the art in pole positioning for
parallel or Kautz filters.

7 DISCUSSION

7.1 Computational Complexity
When looking at Fig. 9, it can be seen that WFIR fil-

ters require four multiply and accumulate (MAC) and two
addition (ADD) operations per second-order section, and
for WIIR filters, six MAC and two ADD instructions are
needed. On general purpose processors, where no MAC
instruction is available, this leads to four multiplications
and six ADDs for the WFIR case, and six multiplications
and eight ADDs for the WIIR case. This is roughly dou-
ble compared with a straightforward second-order IIR fil-
ter, and in practice, the computational complexity becomes
even larger because of the overhead needed because of the
relatively complicated filter structures of Fig. 9.

On the other hand, when the WFIR or WIIR filters are de-
warped to series second-order sections as discussed in SEC.
4.3, the computational complexity becomes the same as for
straightforward IIR filters, that is, four MACs per second-
order section or four multiplications and four ADDs on
general purpose processors.

As for the Kautz filter, it can be deduced from Fig. 10
that the Kautz backbone requires four MAC operations per
second-order section, similarly to series biquads (except
the first section that needs two MACs). Then the (1 + z−1)
and (1 − z−1) terms need two ADDs, and the weights bi,1

and bi,2 and the corresponding output summing require two
MAC operations. This adds up to six MACs and two ADDs,
whereas on general purpose processors where MAC instruc-
tions are not available, eight ADDs and six multiplications
are needed per second-order section. For the fixed-pole par-
allel filter, four MAC instructions, or four multiplications
and ADDs, are needed, similarly to WFIR or IIR filters
de-warped to series second-order sections.

For minimizing the number of arithmetic operations, the
series second-order implementation of warped filters and
the fixed pole parallel filter seem to be the best two con-
tenders. However, coming from the fact that the fixed-pole
parallel filter has a fully parallel structure, additional com-
putational savings can be achieved on parallel architectures
such as graphic processing units [64] compared to the series
structure.

Note that for low-pass, high-pass, band-pass, and band-
reject filters, the series form is preferred because the co-
efficient quantization has much smaller effect on its zeros
than for the parallel form [21]. However, for typical trans-
fer functions used for modeling or equalization where the
exact position of the zeros is less critical, the coefficient
quantization effects of the parallel implementation become
comparable to the series form. On the other hand, it has
been found that the parallel form has smaller round-off
noise compared to the series second-order sections [55,
65].

As a result, if a filter or equalizer is designed as a WIIR
filter, it is advisable to compute its poles, de-warp them,
and design a fixed-pole parallel filter based on these poles,
because this will lead to the lowest computational com-
plexity and best numerical performance (the filter response
remains the same, as discussed in SEC. 6.4).

Note that WFIR filters have multiple poles at λ; thus, they
cannot be converted to second-order parallel sections—
rather, they should be implemented in the series form or
using the more numerically robust all-pass structure of Fig.
9(a).

Kautz filters should also be converted to fixed-pole par-
allel filters by using the equations presented in SEC. 5.5 for
significantly reduced computational complexity. The only
case when the Kautz backbone implementation is preferred
over parallel second-order sections is adaptive filtering, like
an LMS algorithm, since in that case, orthogonality leads
to faster convergence [49, 50]. As a compromise between
complexity and convergence, [50] presents an “orthogonal”
form for the parallel filter.

7.2 Design Complexity and Accuracy
Although Figs. 8 and 13 already provide a good com-

parison because the same target and filter order is used,
here an additional example is presented. The thick line in
Fig. 14(a) displays the same smoothed loudspeaker–room
response that has been modeled in Figs. 8 and 13, but now
filters are being designed so that the equalized response
matches a flat target displayed by thin lines in Fig. 14. It
can be seen in Figs. 14(b) and 14(c) that neither a 1,000th-
order FIR filter nor a 32nd-order IIR filter can equalize
the response when designed in a traditional manner, e.g.,
by the Steiglitz-McBride algorithm (stmcb command in
MATLAB).

An easy way of designing equalizers with logarithmic-
like resolution is WFIR filter design: both the system re-
sponse and target response are pre-warped with an all-pass
chain, and then an FIR equalizer is estimated between these
with an LS design, e.g., using the Steiglitz-McBride al-
gorithm with a numerator order set to zero. Already this
relatively simple procedure produces much better results
compared with those of straightforward IIR filters, as can
be seen in Fig. 14(d).

It is similarly simple to design a Kautz or parallel filter
using a predetermined (e.g., logarithmic) pole set. Note that
for equalizer design the scalar product cannot be computed
for Kautz filters. Instead, an LS estimation needs to be done
[4] exactly the same way as for parallel filters. The filter
weights are computed in closed form by the LS equations
in both cases as in Eq. (18), albeit with different M matri-
ces [4, 59]. Fig. 14(e) shows an example with a stepwise
logarithmic pole frequency set having larger pole density
in the more problematic low-frequency region. Compared
to WFIR filters, a more even distribution of equalization
error can be observed. Therefore, as a starting point for
logarithmic frequency resolution filter design, the present
author suggests the use of Kautz or parallel filters with a
logarithmic pole set.
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Fig. 14. Comparison of different filter design techniques for equal-
izing a sixth-octave smoothed minimum-phase loudspeaker–room
response. Thin lines: target response. Thick lines: (a) the smoothed
loudspeaker–room response equalized by a (b) finite impulse re-
sponse (FIR) filter, (c) straightforward infinite impulse response
(IIR) filter, (d) warped FIR filter using λ= 0.95, (e) fixed-pole par-
allel filter with stepwise logarithmic pole frequencies, (f) warped
IIR filter using λ = 0.95, (g) custom warping, and (h) dual-band
warping. The filter orders are N = 32 for all cases, except for the
FIR filter where N = 1,000. The pole frequencies are displayed
by crosses. The curves are offset for clarity. The square root of the
mean squared error computed in logarithmic scale is given as e =
... for each curve. WFIR, warped FIR; WIIR, warped IIR.

Interestingly, for this particular example, neither the
ripple-based pole positioning [62] nor divide-and-conquer
approach [9] provides a significant benefit over the stepwise
logarithmic pole set (curves not shown). As a next step in
design complexity and modeling accuracy, one may choose
from WIIR filters and Kautz or parallel filter designs using
the poles from a WIIR filter. Especially the custom or dual-
band warping techniques provide a very even distribution
of modeling detail in the logarithmic scale, thus provid-
ing excellent accuracy, as already seen in Figs. 13(g) and
13(h). The performance benefit is similar for the equalizer
case as well, as displayed in Figs. 14(g) and 14(h), showing
a more even distribution of equalization error compared to
single-band warping in Fig. 14(f).

The equalization performance could be most probably
improved by post-optimization, similarly to Fig. 13(i).
However, the method proposed in [63] has been developed
for the modeling case, so it needs to be modified to fit the
equalization task as well. Although this extension should
be relatively straightforward, it is left for future work.

In any case, post-optimization significantly increases the
design complexity compared with the rest of the filter de-
sign methods that typically require 10 to 100 ms in MAT-

LAB; the design examples in Figs. 13(f) and 13(i) need
5–10 s to be computed in MATLAB on an average PC.
This is still acceptable for most applications and becomes
a bottleneck only when the filter needs to be redesigned
in real time based on quick measurements or some user
interaction, such as for a graphic equalizer [66].

Note that for simple (single-band) WIIR design and dual-
band warping, the frequency response of the Kautz or par-
allel filter is practically the same as that of the WIIR fil-
ter(s), from where the poles originate. However, from the
implementation point of view, the parallel filter will lead to
lower computational complexity (compared with the spe-
cial WIIR structure) or better quantization noise perfor-
mance (compared with the series second-order implemen-
tation), as already discussed in SEC. 7.1.

As for choosing between Kautz or parallel filters, the
resulting transfer function is the same for the same set of
poles, and the design complexity is also not very much
different. The LS solution of the parallel filter (especially
the frequency-domain variant) is very robust and efficient;
thus, the benefit of the orthonormality for the Kautz filter
vanishes for non-adaptive cases. Given that Kautz filters
should be converted to the parallel form for lower filter-
ing complexity, it is probably simpler to design the filter
initially in the parallel form to avoid the need of conversion.

Although this paper has presented single-channel model-
ing and equalization examples only, it should be mentioned
that multichannel equalization or crosstalk cancellation is
also possible at the logarithmic frequency scale. So far,
WFIR [67, 68] and fixed-pole parallel filters [69] have
been proposed for this purpose, both of which provide a
computational benefit compared with straightforward FIR
multiple-input–multiple-output equalizers.

8 CONCLUSION

This paper has presented an overview on warped, Kautz,
and fixed-pole parallel filter design for achieving quasi-
logarithmic frequency resolution desirable for audio ap-
plications. It has demonstrated that already the simplest
techniques, like WFIR design or parallel filter design us-
ing a logarithmic pole set, provide significant advantages
compared with straightforward FIR or IIR filter design.
The performance is further improved by more sophisti-
cated WIIR-based pole positioning methods. It is also ar-
gued that for most filter/equalizer design cases, parallel
filters provide the best accuracy for a given computational
complexity, whereas the orthonormality of Kautz filters is
advantageous for adaptive filtering.

9 LIST OF MATLAB/OCTAVE TOOLBOXES

Warped filter design toolbox:
http://legacy.spa.aalto.fi/software/
warp/.
Kautz filter design toolbox:
http://legacy.spa.aalto.fi/software/
kautz/kautz.htm.
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Parallel filter design toolbox:
http://www.mit.bme.hu/∼bank/parfilt/.
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