S. Stickland, R. Athauda, and N. Scott, “Design and Evaluation of a Scalable
Real-Time Online Digital Audio Workstation Collaboration Framework”

J. Audio Eng. Soc., vol. 69, no. 6, pp. 410-431, (2021 June).

DOI: https://doi.org/10.17743/jaes.2021.0016

PAPERS

Design and Evaluation of a Scalable Real-Time
Online Digital Audio Workstation Collaboration
Framework

SCOTT STICKLAND, AES Student Member, RUKSHAN ATHAUDA, AND NATHAN SCOTT, AES member

(scott.stickland@uon.edu.au)

(rukshan.athauda@newcastle.edu.au)

(nathan.scott@newcastle.edu.au)

The University of Newcastle, Australia

Existing designs for collaborative online audio mixing and production, within a Digital Au-
dio Workstation (DAW) context, require a balance between synchronous collaboration, scal-
ability, and audio resolution. Synchronous multiparty collaboration models typically utilize
compressed audio streams. Alternatively those that stream high-resolution audio do not scale
to multiple collaborators or experience issues owing to network limitations. Asynchronous
platforms allow collaboration using copies of DAW projects and high-resolution audio files.
However they require participants to contribute in isolation and have their work auditioned
using asynchronous communication, which is not ideal for collaboration. This paper presents
an innovative online DAW collaboration framework for audio mixing that addresses these
limitations. The framework allows collaborators to synchronously communicate while con-
tributing to the control of a shared DAW project. Collaborators perform remote audio mixing
with access to high-resolution audio and receive real-time updates of remote collaborators’
actions. Participants share project and audio files before a collaboration session; however the
framework transmits control data of remote mixing actions during the session. Implementa-
tion and evaluation have demonstrated the scalability of up to 30 collaborators on residential
Internet bandwidth. The framework delivers an authentic studio mixing experience where high-
resolution audio projects are democratically auditioned and synchronously mixed by remotely

located collaborators.

0 INTRODUCTION

Professional audio mixing of multitrack music record-
ings is intrinsically collaborative and reactive. It demands
effective, timely communication between all collaborators
to audition audio material and processing techniques, typi-
cally via a Digital Audio Workstation (DAW) software ap-
plication. The ideal audio mixing environment is a studio
where engineers and clients can mix and monitor high-
resolution audio assets. Recently many efforts have ex-
plored remote and online modes of operation to facilitate
such shared activities using the Internet. These platforms
have made significant progress in developing online col-
laborative modes of operation, including remote recording,
creative production, and remotely supported music com-
position. We believe there is potential for further improve-
ments to collaboration models to facilitate a more authentic
and inclusive collaborative experience, especially for audio
mixing in professional and educational contexts.

410

We present two hypothetical use-case scenarios to
demonstrate the need for an enhanced, scalable, and more
realistic online DAW collaboration environment.

Scenario 1. An international touring front-of-house
sound engineer renders a live multitrack recording of an
American-based band. At the end of the tour, the sound
engineer returns to Australia, their home country. The
touring band, impressed with the live mixing, wants the
engineer to work with them and their local studio engi-
neer to mix a live album. The sound engineer accepts
the work but is unable to return to the United States
in time. Instead of the engineer creating mixes for de-
layed offline review, the team completes the work by
setting up a real-time, online, collaborative session us-
ing a DAW application. All of the geographically isolated
collaborators join the collaboration session and interac-
tively and simultaneously audition, debate, and discuss the
project and contribute to the process by collectively mixing
and monitoring the high-resolution, uncompressed DAW

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS
a. Synchronous b. High-Resolution
Operation DESIGN REQUIREMENTS Audio
1. Mode of 2. Audio Asset
Operation Quality
CRITICAL DIMENSIONS
4. Accessl/Control =
DAW Project 3. Scalability
d. Al c. Multiple

Collaborators Collaborators

Fig. 1. The four dimensions for designing an online collaborative
DAW environment and the requirements for collaborative audio
mixing and mastering.

project. Mixing the album in this democratized environment
allows all of the stakeholders to provide in-the-moment,
practical, and immediately enacted contributions and arrive
at a final mix in a more synergetic, timely, and mutually
agreeable manner.

Scenario 2: A college of music offers an online course in
advanced audio mixing. The online tutor, who has a class
of 25 remote students, has shared access to high-resolution
audio files and a DAW project via a cloud storage folder.
The tutor and students, who have already downloaded the
DAW project and high-resolution audio files to their local
computer, open a local instance of the DAW project with
remote control facilitated by an online DAW collaboration
application.

All of the class communicates via a videoconferencing
feature, and the tutor and students connect their local DAW
to the collaboration application, linking all of the remote
instantiations. Initially the tutor demonstrates the use of
a compressor plug-in, which the students observe in their
local DAW. Any adjustments to the compressor plug-in
are executed on the local DAW instantiation and then mir-
rored on all other DAWSs within the collaboration session.
Wishing to gauge the students’ level of understanding and
proficiency, the tutor individually invites students to apply
compression to another of the audio tracks in the DAW
project. Everyone else observes the changes with live com-
ments managed via videoconferencing or a text-based chat.

In the above scenarios, each real-time collaborator can:

e View and control a local DAW instantiation of the
collaborative audio mixing project;

e Interact and communicate synchronously with all
other stakeholders (via videoconferencing and on-
line chat); and

e Locally monitor the mixing project’s progress
(which includes remote collaborators audio mix-
ing actions) through uncompressed, high-resolution
(> 44.1 kHz, 16-bit) audio.

We derive four critical dimensions that need addressing
in developing an online DAW collaboration framework in
audio mixing (see Fig. 1):

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

1. Mode of Operation: Either a simultaneous (syn-
chronous) or delayed (asynchronous) mode of op-
eration and interaction;

2. Audio Asset Quality: The quality, or fidelity, of the
project’s audio assets accessed by each collaborator;

3. Scalability: An ability to scale the collaboration ses-
sion to well beyond one-on-one interactions; and

4. Access/Control of DAW Project: An ability to ac-
cess and control/operate the DAW project by each
collaborator.

For an online DAW collaboration framework to facili-
tate the needs of the two scenarios presented above, it must
deliver the following requirements for the four critical di-
mensions (see Fig. 1):

a. Synchronous operation: A mode of operation,
where all collaborators can interactively communi-
cate/participate during the collaboration session;

b. High-Resolution Audio: Access to high-resolution au-
dio assets by each collaborator. High-resolution au-
dio consists of a sample rate of at least 48 kHz and
resolutions of at least 24-bit, the generally accepted
benchmarks for pre-mastering, professional-grade mu-
sic production [1,2];

c. MultipleCollaborators: Scalability to encompass mul-
tiple collaborators (for example, up to 26 collaborators
including the online tutor in Scenario 2); and

d. All Collaborators: Access to and control of the collab-
orative DAW project that is equitable and localized for
all of the collaborators, allowing for real-time moni-
toring of remote changes and a means of contributing
to the project through DAW-enabled actions by each
collaborator.

Existing DAW collaboration platforms fall short of meet-
ing at least one of the above requirements (see detailed
discussion in SEC. 1). Thus, in the paper, we present a
framework for online collaborative professional audio mix-
ing, meeting all four requirements presented above. The
framework provides a unique approach and broadens the
paradigm for remote online collaborative audio mixing.

The organization of this paper is as follows: SEc. 1 pro-
vides context and discusses related work in this area. In
SEC. 2, we present the design of the framework in detail.
SEC. 3 outlines the implementation of the framework and
a detailed evaluation of the framework is provided in SEC.
4. SEC. 5 concludes the paper with a discussion of future
research directions.

1 RELATED WORK

In this section we review existing DAW collabora-
tion platforms, including mainstream standalone and web
browser-based applications [3,4], and evaluate their capac-
ity to meet the requirements outlined in SEC. 0, based on
the four dimensions.

411

STICKLAND ET AL

Existing platforms with a synchronous mode of opera-
tion typically forego even a modest number of simultane-
ous collaborators in favor of streaming compressed, high-
quality (sub-high-resolution) real-time audio to effectively
minimize the demands on available bandwidth. Source El-
ements’ DAW-agnostic Source-Connect Pro [5] and Stein-
berg’s Cubase-centric VST Connect Pro [6] are successful
pioneers of this design ethic. They are perhaps better char-
acterized as remote performer/recording platforms, wherein
the “studio” collaborator is the only one with access to
the DAW project. Similarly recent platforms, including
Soundwhale [7], Audiomovers’ Listento and Listento Re-
ceiver [8], Sessionwire Studio [9], and ConnectionOpen
[10], variously offer “studio-quality,” “high-resolution,”
“high-quality,” or “uncompressed” audio streaming directly
into a collaborator’s remote DAW platform. Of the plat-
forms mentioned above Source-Connect Pro, VST Connect
Pro, and Soundwhale provide synchronized playback and
recording between the application and a remote DAW, nev-
ertheless none can currently provide an environment for
multiparty, collaborative, and democratized audio mixing.

A synchronous environment can indeed function with
multiple collaborators; however audio streamed over a net-
work, and especially audio streamed over the Internet, is
more susceptible to latency and jitter [11,12]. For those
users unable to access high-speed connections, platforms
such as Listento offer the option of streaming sub-high-
resolution lossy/compressed audio between all participants
to reduce the likelihood of jitter, dropped packets, and la-
tency [8,13].

Inserting a multiparty audio streaming platform as a plug-
in into a DAW'’s main stereo mix bus gives an engineer
the ability to stream a mix directly to multiple remote lo-
cations, thereby facilitating a means of synchronous audi-
tioning and providing feedback, provided that there are also
synchronous lines of group communication established. In
such a scenario, however, only the one mixing engineer
has access to the DAW; therefore only one person in the
collaboration can execute changes to the mix as the mixing
progresses. While this arrangement may suit some audio
mixing scenarios that are centered on the mixing skills
of a single sound engineer, this approach does not enable
additional collaborators at different locations to be simul-
taneously involved with the practicalities of mixing.

Some approaches have chosen to forgo synchronous op-
eration in favor of asynchronous audio and project file shar-
ing via cloud storage, consequently facilitating many col-
laborators to work with high-resolution audio assets. Avid’s
Cloud Collaboration [14] and Steinberg’s VST Transit and
Transit Join [15] are examples of this asynchronous ap-
proach. Spotify’s Soundtrap [16] and BandLab Technolo-
gies’ BandLab [17], both archetypes of a web browser-
based DAW platform, are similar in design and adopt Web
Audio and Web MIDI application programming interfaces
(APIs) to implement their functionality and audio process-
ing.

Naturally an asynchronous mode of operation is at odds
with the reactive context of collaborative audio mixing in
the studio, which values in-the-moment auditioning and

412

PAPERS

spontaneity. Asynchronous environments are typified by
collaborators who contribute to a DAW project in isolation,
saving and uploading these changes to an updated version
of the project in cloud storage. There is typically no mech-
anism by which to closely observe, audibly monitor, evalu-
ate, and discuss remote contributions and changes instanta-
neously. Instead changes to the collaborators’ local version
of the project are uploaded to the cloud then synchronized
with a downloaded version at each location. Asynchronous
communication is often characterized by text-based mes-
saging within the collaboration platform or co-opting exist-
ing messaging through social media platforms, short mes-
sage service (SMS), or email. Although these platforms
are successful for collaborative music creation and remote
contributions in, for example, the composition of a piece
of music, they do not necessarily achieve an authentic, col-
laborative studio mixing context as discussed for profes-
sional and educational audio mixing scenarios presented in
SEc. 0.

Table 1 presents the existing DAW-agnostic and DAW-
specific collaboration platforms and identifies their capac-
ity to deliver on the four critical dimensions. It is essential to
observe that not one of the platforms is capable of meeting
all four dimensions. That is, no platform can synchronously
link and provide access for many collaborators to a shared
DAW project while also allowing every collaborator to mix
and process high-resolution multitrack audio files without
requiring post-synchronous collaboration uploading, down-
loading, auditioning, and decision making.

Both Source-Connect Pro and VST Connect Pro imple-
ment lossy audio codecs, version 2 of the advanced au-
dio coding (AAC) enhanced low delay codec, with sample
rates from 44.1 to 192 kHz and bit rates from 32 to 364 kbps
[18], and a proprietary process utilizing Vorbis, with sample
rates from 11.025 to 192 kHz and bit rates from 45 to 500
kbps [19], respectively, for streaming during the collabora-
tion session. These codecs minimize real-time latency and
buffer sizes during the session [20,21]; however both plat-
forms also offer an integrated post-collaboration session
repair or replacement process using the remote performer’s
locally stored pulse code modulation (PCM) recording of
the session.

Neither platform scales well, with Source-Connect Pro
offering a maximum of four simultaneous collaborators or
four additional audio streams using the multi-connect fea-
ture, which provides three additional instantiations within
a DAW project. VST Connect Pro is strictly a one-to-one
collaboration model but does have the additional benefit of
an accompanying video and chat capability and can stream
up to sixteen simultaneous audio channels for multichannel
recordings, such as discrete drum kit components [21].

Avid Cloud Collaboration and VST Transit/Transit Join
utilize the WavPack codec, which encompasses sample rates
from 6 to 192 kHz and bit depths of 16, 24, and 32-bit and
32-hit floating [22] and Free Lossless Audio Codec, capa-
ble of sample rates from 1 to 655.35 kHz and bit depths
of 4, 8, 16, 24, and 32-bit [23], respectively, to maximize
cloud storage capacity. Employing these codecs reduces
the size of the audio files without detrimentally affecting

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK
Table 1. Comparison of DAW collaboration platforms.
High-Resolution
Synchronous Audio (> 44.1 kHz, Equal Access
Interactions & 16-bit, Lossless, to/Control of the
Platform Communication Uncompressed) Scalable (> 2 Peers) DAW Project
Source-Connect Pro 4 +/ (Using +/ (Limited to 4) X
(v.3.9) [20] asynchronous
Auto-Restore/Auto-
Replace)
VST Connect Pro i +/ (Using X X
(v.4) / VST Connect asynchronous HD
Performer [21] replacement option)
Avid Cloud X J +/ (Limited to 11) Vv
Collaboration [10]
VST Transit / VST X V4 N N
Transit Join [11]
Soundtrap [12] X X Vv Vv
BandLab [13] J X J J
Soundwhale [3] i +/ (Using X X
asynchronous
third-party
file-sharing of local
PCM recordings)
Listento/Listento i 4 4 X
Receiver
(v.20200416) [4]
Sessionwire Sudio i J X X
[5]
ConnectionOpen i x (44.1 kHz, 16-bit; / (Limited to 3) X
(v.3.7.0) [6] 48 kHz, 16-bit
possible)

their resolution and maximizes download data limits. The
asynchronous nature of these platforms translates to much-
improved scalability, with Avid Cloud Collaboration limit-
ing the number of collaborators at any given time to eleven
and VST Transit encompassing unlimited but asynchronous
participation.

The Web Audio API is at the center of the audio pro-
cessing capabilities of browser-based DAW applications,
such as Soundtrap and BandLab. In contrast, existing pro-
fessional offline DAW platforms (e.g., Pro Tools, Cubase,
Logic) employ long-established, low-latency Audio Stream
Input/Output (ASIO) [24] or Core Audio [25] protocols for
Windows and macOS-based PCs, respectively. Consistent
implementation of these protocols, together with digital sig-
nal processing interface technologies such as Virtual Studio
Technology (VST) [24], AudioUnit (AU) [26], and Avid
Audio eXtension (AAX) [27], has given rise to an ever-
expanding market of audio processor plug-in applications.

While the browser-based user environment and cloud
storage are well suited to online collaboration, browser-

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

based DAWSs have yet to see mainstream acceptance in
professional mixing of recorded music, mainly owing to
their incompatibility with existing VST, AU, or AAX-
based plug-ins. Furthermore, while developer efforts have
resulted in progressive improvements to input and output
latencies, Web Audio cannot provide the same low-latency
response expected in professional audio mixing [28]. Ad-
ditional limitations include relatively small track counts
(BandLab) and use of the Vorbis (lossy) codec in processing
audio assets before their storage in the cloud (Soundtrap).
Recent DAW-agnostic collaborative streaming platforms
utilize audio codecs such as AAC [29] (Soundwhale [30];
Listento/Listento Receiver [8]) and Opus [31] (Sessionwire
Sudio) at bit rates below that of uncompressed audio; how-
ever they can encounter jitter, dropped packets, and latency
issues. With a fixed bit depth of 16 bit, ConnectionOpen
allows the user to nominate a sample rate compatible with
their system’s chosen ASIO or Core Audio driver. Signifi-
cantly, the Listento/Listento Receiver standalone and plug-
in applications currently offer three “PCM” audio stream

413

STICKLAND ET AL

DAW

Project <:::>

Files

DAW DCIA

oS!
"

DAW

Project <:>

Files

DAW

&

DCIA

PAPERS

DAW

<:::> Project

Files

DCIA DAW

"ol
!

DAW

<::> Project

Files

DCIA DAW

=)

Fig. 2. The overarching design of the DAW Collaboration Framework (DCF).

options with varying bit depths, specifically 16-bit, 24-bit,
and 32-bit float, paired with a user-defined sample rate, usu-
ally dictated by the associated DAW project’s sample rate
[8]. Consequently this platform provides high-resolution
audio streaming and remote recording, albeit with the risks
associated with media streaming over the Internet (see SEC.
4.2 for details on media streaming protocols). Further-
more the plug-ins cannot synchronize playback/recording
between remote DAW instantiations; therefore streamed
recordings require post-collaboration alignment with exist-
ing project events.

In summary current online DAW collaboration platforms
fall short of meeting all four of the dimensions outlined:
a synchronous mode of interactions and communication,
an ability to mix and process high-resolution audio assets,
scalability to encompass many collaborators, and equitable
control of and access to a DAW project for every collab-
orator. In the next section we present the design of our
proposed framework that is capable of meeting the require-
ments on all four dimensions with a potential to lead to new
online collaboration and education models and practices in
professional audio mixing of recorded music.

DAW Collaboration
Interface Application
(DCIA)

Local DAW
Control
Data

Remote
DAW
Control Data DAW
Project &
High-Resolution
Audio
Files

Local DAW
Control
Data

‘P R S

e = = —————— -]

DAW

Videoconferencing

Application Cloud

Storage

2 DAW COLLABORATION FRAMEWORK (DCF):
DESIGN

The existing synchronous collaborations platforms have
taken two distinct design approaches:

1. Streaming sub-high-resolution audio to cater for
many remote collaborators; or

2. Streaming high-resolution audio to cater for a limited
number of remote collaborators only.

These approaches are primarily due to the limited band-
widths available in today’s Internet for streaming high-
resolution audio assets to multiple collaborators during a
collaboration session.

To address this limitation the proposed framework,
termed DAW Collaboration Framework (DCF), avoids
streaming high-resolution audio data in real time during
the collaboration session. Instead the DCF streams low-
bandwidth control data, generated by each collaborator’s
actions, to extend DAW control to all other collaborators’
DAW project instantiations over the Internet. This approach
allows the platform to scale to many collaborators, as the
bottleneck of network bandwidth is addressed by only trans-
mitting low-bandwidth control data while providing each
collaborator with control of the DAW project and access

Server

Remote , M |
DAW Control
Data

i To | From Remote
Participants

Fig. 3. The role of the DCIA: locating and connecting to remote collaborators and streaming communication media (audio and video
streams and optional text-based messages) and the MIDI control data messages to and from remote collaborators and their local DAW

via the Internet.

414

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

1. Local Peer 3.

DAW DCIA

Internet

DAW DCIA

Cloud Storage Remote

Peers

Fig. 4. The overall process in a collaboration session, integrating
cloud storage.

to high-resolution audio assets shared before the collabo-
ration session. This framework enables real-time interac-
tions and communications with multiple online peers, all
with the capacity to access and mix a shared DAW project
and monitor the audio playback in high resolution. To our
knowledge this approach has not been previously success-
fully applied over the public Internet. Brock et al. [32,33]
have identified control data streaming, in conjunction with
high-resolution audio over IP, as a novel and promising ap-
proach to distributed remote audio post-production in the
film industry. However due to the Internet’s bandwidth limi-
tations and lack of high-level Quality of Service, successful
deployment of the collaboration solution was restricted to
a privately managed research network [34].

Fig. 2 presents the overarching design of the DCF. A
Web application termed DAW Collaboration Interface Ap-
plication (DCIA) interacts with each collaborator’s DAW
application to transmit and receive control data to synchro-
nize DAW operations and the session’s real-time video-
conferencing and chat communication streams. Multiple
collaborators synchronously interact with their local DAW
project, accessing, mixing, processing, and monitoring
high-resolution audio assets.

2.1 DCIA and DAW Application Interfacing
The DCIA performs two essential roles:

1. Establishing a crucial link between the Internet and
DAW (see Fig. 3) to enable relaying of DAW-
generated control data in the form of Musical In-
strument Digital Interface (MIDI) messages; and

2. Locating, connecting, and streaming communication
media (audio and video streams) and MIDI control
data messages to and from the remote collaborators.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

By running concurrent instantiations of the DCIA and a
DAW application on one machine, every peer can interface
with potentially any DAW platform that accepts and trans-
mits remote control MIDI messages and links that DAW
instance with all other remote instantiations in the collabo-
ration. Furthermore a music production project file and its
associated high-resolution audio assets can be distributed
and downloaded by the participants before or at the outset
of a collaboration session by existing asynchronous file-
sharing or cloud storage access methods.

Fig. 4 outlines the overall process in a collaboration ses-
sion. A participant opens the DAW application (Step 1)
and downloads the DAW project and high-resolution au-
dio files from cloud storage (Step 2). The participant then
navigates to the DCIA browser-based application (Step 3)
and selects two virtual MIDI ports to interface the DCIA
with the DAW application (Step 4). Finally the DCIA es-
tablishes network connections with remote participants to
create a collaboration session and stream locally generated,
and receive remotely generated, communication media and
DAW control data (Step 5).

2.2 Connection Architectures

There are several ways in which to design the communi-
cation architecture between collaborators [35]. In a decen-
tralized architecture each site directly communicates with
the other sites (in a peer-to-peer manner), forming a mesh
architecture for group interactions [36,37] [see Fig. 5(a)].
In a centralized architecture a central server (such as a me-
dia server) facilitates communication among collaborators.
The central server can integrate communication channels
to form a mixing architecture that provides a single channel
between each collaborator and the central server [see Fig.
5(b)] or route communication channels to and from each
collaborator to form a routing architecture [see Fig. 5(c)].
Deployment of the central server can be as a standalone
hardware component [38] or a cloud-based service [39].
We discuss the implementation and evaluation of different
connection architectures in SEC. 4.

2.3 Features and Benefits of the Platform

The design of the DCF and DCIA derives several bene-
fits. The notable features of our approach include:

e Scalability: A significant reduction in the volume of
streamed data during a collaboration session around
which the successful operation of the collabora-
tion hinges. The streaming of MIDI control mes-
sages and the choice to relegate the importance of
data-intensive streamed audio/video to only sup-
port videoconferencing and chat between peers have
meant reduced bandwidth usage and thus the capac-
ity to significantly increase the number of partici-
pants that can interact in real-time;

e Access to high-resolution audio: By avoiding high-
resolution audio streaming during a collaboration
session, each peer monitors the DAW project’s audio
assets directly from their local DAW instantiation;

415

STICKLAND ET AL

PAPERS

] Mesh

(b)

] l:l Mixing

Fig. 5. Communication architectures for the DCF: (a) decentralized mesh architecture; (b) centralized mixing architecture; and (c)
centralized routing architectures.

416

therefore the resolution of the DAW audio playback
is only limited by:
o The project’s local audio file characteristics, par-
ticularly sample rate and bit depth;
o The specification of a peer’s audio A-D/D-A in-
terface; and
o A peer’s monitoring equipment;
Access to and remote control of the DAW project:
Through mapping and the triggering of MIDI mes-
sages, local DAW operations and functions generate
the control data streamed to all other peers, upon
the reception of which the remote DAW instantia-
tions mirror the exact operations and functions. The
DCF provides every collaborator with full control
of their local DAW project while also receiving and
replicating all remote collaborator actions; and
Use of the public Internet: Given that the partici-
pants in the collaboration monitor their local DAW-
generated audio playback throughout the audio mix-
ing work, each is unaware of the slight differences in
the inherent latencies between them, rendering the
public Internet more than capable of providing the
required bandwidth, throughput, and Quality of Ser-
vice. Also, today’s Internet bandwidths are capable
of providing videoconferencing facilities to utilizing
unreliable protocols such as User Datagram Protocol
(UDP).

MIDI Message
Type Number
1011

DAW
Function
e.g. Move

Level Fader 1

MIDI Message
Channel
Number

0001

MIDI Message
Parameter
Numbers
00000111

_ |_ou11000 |

The design choices of the platform and features have en-
visaged a professional audio mixing platform that can scale
to a significant number of participants using typical Inter-
net bandwidths with each collaborator having access and
control of a shared DAW project with high-resolution audio
assets, all the while communicating via videoconferencing
and chat with every participant in a collaboration session.
This design meets the four critical requirements for Sce-
narios 1 and 2 outlined in SEC. 0. The following section
discusses the implementation and evaluation of the DCF.

3 DCF IMPLEMENTATION

We begin this section by discussing the choice of DAW
platform and the features that enable us to integrate the
DAW into the DCF architecture. We then discuss how the
DCIA utilizes the WebRTC API to facilitate real-time on-
line group communication, followed by an examination of
how the Web MIDI API and WebRTC data channels trans-
mit and receive MIDI control messages to and from the
DCIA. To conclude this section we present three imple-
mentations of various connection architectures.

3.1 Remotely Controlling a DAW Application

In examining the remote-control capabilities of a
professional-grade DAW application we chose two plat-
forms: Steinberg’s Cubase Pro [40] and Cockos’ REAPER
[41]; both are representative of the current professional

MIDI Message
10110001
00000111
01111000

MIDI Out Port

Fig. 6. An elementary DAW function mapped to a MIDI 1.0 protocol message and sent to a MIDI Out port.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS
<?xml version="1.8" encoding="UTF-8"?>
<remotedescription version="1.1">
<ctrltable name="Standard MIDI">
<ctrl>
<name>Fader 1</name>
<stat>176</stat>
<chan>©@</chan>
<addr>7</addr>
<max>127</max>
<flags>»3</flags>
¢/etrld
<ctrl>
<name>Fader 2</name>
<stat>176</stat>
<chan>1</chan>
<addr>7</addr>
<max>127</max>
<flags»>3</flags>
Lfetrl>

srtrnls

Fig. 7. An example of the XML file format for MIDI mapping
DAW functions.

DAW market. Of especial importance was their ability to
integrate with an external remote controller, such as a con-
trol surface.

Remote controllers, particularly control surfaces, are
hardware devices that integrate with DAW software that
provides users with a tactile, analogue control over mix-
ing and music production functions. Surfaces generally do
not receive or transmit audio signals but instead receive
and transmit data commands and parameters that map to a
DAW'’s various functions, employing data protocols includ-
ing Musical Instrument Digital Interface (MIDI) 1.0 [42]
and Open Sound Control [43].

Both Cubase Pro and REAPER feature external con-
troller integration and include factory default configura-
tions for some of the mainstream MIDI-based devices and
control protocols, such as Mackie Control Universal and
Human User Interface. These protocols are predetermined,
mapping specific MIDI controller data to DAW functions
and commands (see Fig. 6). Cubase Pro further includes a
Generic Remote feature that allows users to create a cus-
tomized MIDI mapping to and from many of the DAW’s
mixing and audio processing operations. Importantly this
mapping can be imported and exported as a standard XML
file (see Fig. 7) for sharing between various instantiations
of Cubase Pro, delivering a uniform response to incom-
ing MIDI control data and the generation of control data
when mixing functions, such as level, panning, and plug-in
parameter changes, are implemented.

Currently however choosing MIDI 1.0 messages as DAW
control data does provide some limitations in functional-
ity. Binary DAW functions, such as mute and solo but-
tons/switches, which are either on or off, can be readily
mapped to MIDI Note On and Note Off events. Similarly
DAW functions with values on a continuum, such as level
faders, pan-pots, and plug-in parameters, can be mapped

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

to MIDI Continuous Controllers (CCs), but values are re-
stricted to 128 gradations owing to the MIDI 1.0 speci-
fication determining that CC values range between 0 and
127 [42]. To illustrate this limitation the operation of a
level fader, for example, which is capable of significant
positional variations, can only generate a maximum of 128
different fader-position control data messages.

3.2 Real-Time Online Group Communication

The web browser, as an interactive platform for real-time
communications, has seen a rapid rate of development and
expansion in capabilities in support of online collabora-
tion. In particular the WebRTC standard provides peer-to-
peer connectivity, media device capture and streaming over
User Datagram Protocol (UDP), and binary data stream-
ing over Stream Control Transmission Protocol (SCTP)
[38,44]. UDP, an inherently unreliable ‘best-effort’ proto-
col, is commonly used in media streaming over the Internet
owing to its low-latency delivery of data packets [45]. UDP
however is susceptible to lost and dropped packets and
out-of-order packet delivery. SCTP on the other hand of-
fers reliable or semi-reliable packet delivery, providing the
ability to determine a maximum number of retransmissions
or a maximum packet lifetime and ordered or unordered
packet delivery [46].

WebRTC allows for the establishment of real-time
online, operating system-agnostic connections between
web browsers, and an effective means of communica-
tion through synchronous videoconferencing and an asyn-
chronous text-based chat facility. With the work of the In-
ternet Engineering Task Force and World Wide Web Con-
sortium (W3C) in recent years, the WebRTC API has been
increasingly integrated and standardized across most of the
popular web browser platforms [47]. Though primarily de-
signed with a peer-to-peer connection architecture the in-
clusion of an external media server significantly increases
the number of simultaneous connections enabling expanded
group communications and interactions.

For all its advantages, WebRTC does include one notable
drawback for professional music production collaboration.
WebRTC’s media streaming API utilizes the Opus audio
compression codec [48] across its audio streams, produc-
ing sub-high-resolution audio [49]. Therefore while devel-
opers can exploit WebRTC’s APIs to identify online peers,
establish connections, and provide videoconferencing com-
munication between the peers, it cannot deliver a streamed,
high-resolution audio source for the collaboration.

3.3 Utilizing and Integrating the Web MIDI and
WebRTC APIs

Grounding the DCIA in a web browser environment not
only allows the application to exploit the WebRTC API but
also integrate the Web MIDI API [50]. Developed by the
Web Audio Working Group of the W3C, Web MIDI gives
Chromium-based browsers [51] access to the local com-
puter’s MIDI devices and ports and facilitates MIDI data
flow between them. Given that mapped MIDI commands
can remotely control a DAW it was, therefore, advantageous

417

STICKLAND ET AL PAPERS
WebRTC APIs
4 RTCPeerConnection
dm To remote
dataChannel. send({uName, [MIDImessage], timestamp})—| participants
5 onmessage(event) <— |frrom remote
RTCDataChannel participants
3 4 Web MIDI APIs
onmidimessage(event)
MIDIMessageEvent 5
f MIDIPort.send([MIDImessage])
MIDIPort
2 ¢
MIDIOutput
MIDIInput(fromDAWOutputPort) (toDAWINnputPort)
Local DAW PE A
-] e
MICEMMC .~ ' Local DAW Remote DAW ! -y
_-7 , Control Data Control Data 1 S..
A " ¥ o
Output Port Dutpit Port 1 Im:um6 Port Input Port
-—
Cubase Pro Cubase Pro
MTC & MMC Master Cubase Pro MTC & MMC Slave
Only Generic Remote Only

Fig. 8. The six steps in the data flow between Cubase Pro (the DAW) and the Web MIDI and WebRTC APIs, methods and handlers.

to explore the functionality that Web MIDI presents. Of cru-
cial importance is the application’s facility to disseminate
received MIDI events to all participants in a collaboration.

The WebRTC API can establish an online group and de-
liver audio/visual communications in the browser environ-
ment. In addition, it can optionally establish bi-directional
data channel connections that carry arbitrary, binary data
between the peers in parallel to, but separate from, the me-
dia channels [52]. RTC data channels use SCTP for reliable
or semi-reliable message delivery and therefore provide the
necessary infrastructure to direct a MIDI data flow through
the data channels to every participant in the collaboration
session. The DCIA’s basic design, therefore, has a dual
purpose:

1. To establish WebRTC peer connections for stream-
ing media for videoconferencing among collabora-
tors and data for streaming MIDI control data and
chat communication; and

2. To gain access to a DAW via the DCIA’s Web MIDI
ports and the DAW’s MIDI-based remote-control
feature.

Fig. 8 shows the interplay between the WebRTC and
Web MIDI APIs, their methods, and handlers. In this in-
stance the chosen DAW is Cubase Pro so that the Generic
Remote feature can interface with the collaboration applica-
tion, generating MIDI data events that represent the DAW’s
local, user-instigated, mixing functions and operations and
executing these functions upon receipt of data events from
the application.

Described below is the process of interactions between
local and remote collaborator DAW instantiations:

Sep 1: Operation of the DAW creates a MIDI message
that conforms to the XML MIDI mapping file. The MIDI
message consists of:

418

1011 0100 00001011 01011110

Control Change MIDI Channel #4 Continuous Controller #11 Control Change Value: 94

AN J \ J
Y Y

Status Byte Data Bytes

Fig. 9. Atypical 3-byte MIDI message format.

1. A status byte, comprising of the message type num-
ber [typically a ‘Note On’ event (1001) or ‘Control
Change’ event (1011)] and the message’s selected
MIDI channel (0000 to 1111); and

2. A number (typically two data bytes), consisting of
the event’s parameters, both ranging from 00000000
to 01111111 (see Fig. 9).

To synchronize the playback and navigation of every
DAW instantiation in the collaboration it is critical that the
DCIA additionally receives and transmits MIDI timecode
(MTC) and MIDI Machine Control (MMC) messages. The
MTC paradigm uses 2-byte quarter frame messages for
synchronization (see Fig. 10). MMC 1.0 is a form of system
exclusive MIDI message and as such adopts the universal
system exclusive format, shown in Fig. 10.

Sep 2: The DAW directs the MIDI message to the
Generic Remote’s MIDI Output port. A virtual MIDI port is
necessary to facilitate the interfacing between the DAW and
DCIA and we have used the LoopBe30 virtual port software
for this purpose [49]. The DCIA’s Web MIDI MIDIPort
interface is assigned the same MIDI Input port as the
Generic Remote’s MIDI Output port (see Fig. 11).

Sep 3: On receiving a MIDI message event the Web
MIDI onmidimessage(event) handler executes a
function that converts the event data into an array, along

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

A

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Al

11110001

MIDI Timecode Quarter Frame Message Type (hrs, min, sec, frame)

\ J \

0011 1001

Message Value

J

Y Y
Status Byte Data Byte
A A
r N7 A}
11110000 01111111 01111111 00000110 01000100 00000011 11110111
MIDI Machine Control Message Message Start ;ﬁt}g:llz Machine Control Locate Deferred Play Message End
Command
AN J \ J
Y Y
Status Byte Data Bytes

Fig. 10. An archetypal MTC quarter frame message (top) and an example of an MMC message (bottom).

with the peer’s username and a timestamp, then converts
the array to a string.

Sep 4. The DCIA establishes an RTCPeerConnec-
tion data channel and sends the string, dm, consisting of
the three elements: the username of the peer who created
the message [0], the MIDI message’s status and data bytes
[1], and a timestamp [2].

Sep 5: The DCIA’s onmessage (event) handler ex-
ecutes a function that parses the incoming string and recon-
structs the MIDI message from the second element [1] and
sends it to the MID10utput port (toDAWInputPort).

Sep 6: The MIDI message travels to the Generic Re-
mote’s MIDI Input port, another virtual MIDI port allocated
as the DCIA’s MIDIOutput port.

3.4 Connection Architectures

There are several ways to connect collaborators. Firstly
we discuss the implementation of a decentralized peer-to-
peer mesh architecture, followed by the implementation of
a centralized media server-enabled architecture.

3.4.1 Decentralized Mesh Architecture

Deploying the DCIA entailed the creation of numerous
P2P connections, facilitated by a simple Node JS signal-
ing server to identify Interactive Connectivity Establish-
ment candidates and perform Network Address Translation
traversal (see Fig. 12). This mesh architecture is the most
elementary form of WebRTC-enabled group communica-
tion, which avoids a central media server in favor of direct,
low-latency connectivity.

3.4.2 Centralized Connection Architecture:
Mixing and Routing

To implement a centralized connection architecture we
chose the LiveSwitch [53] WebRTC media server devel-
oped by Frozen Mountain. The intrinsic advantages of using
LiveSwitch in the development of the DCF were threefold:

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

Fig. 11. The Generic Remote MIDI Output port (02. Internal
MIDI) assigned to the interface application’s MIDI Input (MIDI
control data port from DAW) port.

1. Its ability to operate as a multipoint connection unit
(MCU) to establish a mixing architecture, selective
forwarding unit (SFU) to establish a routing archi-
tecture, or a hybrid of both. This flexibility allowed
us to experiment and investigate which model of op-
eration provided the best user experience;

2. Its ability to route RTC data channels through the
server rather than to establish multiple P2P connec-
tions; and

3. The option of creating multiple servers to distribute
and serve the media and control data streams sepa-
rately.

Our implementation utilized Frozen Mountain’s
LiveSwitch Cloud server, which hosts the media and data
servers on their cloud infrastructure, to avoid the cost of
setting up a hardware-based media server. Accessing the
LiveSwitch server requires the generation of a secure web
token so that users can register with the server, enter the col-
laboration group videoconference, and participate in data
transfer between DAW instantiations. We implemented a
Node JS web server for this purpose and locally hosted it
on a Windows 10 laptop PC (Intel Core i7-3610QM CPU

419

STICKLAND ET AL

PAPERS

W

IGE Candlaaso B NAT ~ Collaborator 2
Traversal Negotiation -
A
L
: g i) Node JS . ' . Peer-to-Peer WebRTC
| Signaling Server | Media & Data Streams
| ~ A I
’ A ™ _

Collaborator 3

<

Collaborator 4

Fig. 12. Peer-to-peer mesh architecture with a Node JS signaling server.

@ 2.3 GHz) as the architecture’s Authorization Server for
our experiments.

Fig. 13 illustrates the architecture and signal flow sup-
porting the online collaboration process. The DCIA, as
in the mesh architecture, interfaces with Cubase Pro di-
rectly through the Generic Remote feature DAW-side and
Web MIDI ports application-side, routing control data mes-
sages to and from the DCIA’s WebRTC data channels.
The Authorization Server generates JavaScript Object No-
tation (JSON) web tokens (JWTSs), directs the DCIA to
the LiveSwitch Gateway server, which functions as the sig-
naling server, and registers the DCIA with the LiveSwitch
Cloud servers using the respective JWTs. Generatinga JWT
requires a combination of client-side and server-side ob-
jects, the combination of which ensures a secure means of
accessing a collaboration session.

Two separate instantiations of the LiveSwitch media
server were employed (see Fig. 14): one for audio-visual
streams for videoconferencing (termed Media Server) and
the other for control data and text streams (termed Data
Server). The Media Server’s configuration uses UDP to
stream audio-visual data streams efficiently while the Data
Server uses SCTP to stream control data and text data re-
liably. Using two servers provides a division of the DCF’s
data streams and allows for experimentation with hybrid
MCU/SFU architectures. The dual-server model also deliv-
ers a level of redundancy if one server goes offline, permit-
ting either the videoconferencing or text-based chat feature
to continue. The Authorization Server generates two JWTSs:

420

one for the collaboration’s media (audio and video) streams
and the other for the collaboration’s data streams.

4 DCF EVALUATION: RESULTS AND
DISCUSSION

This section presents the evaluation of DCF. The orga-
nization is as follows: Firstly we present the metrics and
environment used for the evaluation then outline the client-
side CPU performance results, client-side and server-side
bandwidth usage results, and scalability of the DCF to mul-
tiple collaborators, using different connection architectures.
We conclude this section with a discussion of the results
and limitations identified through the DCF implementation.

4.1 Metrics

The metrics we use to evaluate the DCF across three con-
nection architectures, specifically mesh, mixing, and rout-
ing architectures, are CPU performance, bandwidth usage,
and scalability.

Audio processing and DAW mixing operations are in-
trinsically CPU-intensive and a machine’s CPU capability
and available RAM can limit such operations. While DAW
manufacturers recommend minimum system requirements,
for example Steinberg recommends an Intel Core i5 or faster
CPU and 8 GB RAM [54], it is not unusual for professional
DAW users to work on machines that feature > 3 GHz, >
8-core/8-thread processors, and > 32 GB RAM [55]. There-

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

Download and
import into
Cubase Pro

DAW project

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Cloud Storage

DAW project file and audio files rﬁj‘

and audio
files from
Cloud Storage

Steinberg's Cubase
Pro Music Production
Software Application

O =)

Authorization

(DAW) Server
A | g| | Authorization
JavaScript Object Server
Notation (JSON) generates
Web Tokens | authorization
g | tokens for all
| participants to
| connect to the
_____________________ - - | LiveSwitch
Cloud media
] DCIA converts Object 1
Imported XML | MIDI 1.0 Notation (JSON) [DCIA routes DCIA 1 = J server
file tells MIDI 1.0 \ it String data channels ‘establishes a
Cubase Pro to objects that to and from videoconference| |
.| generate MIDI I can be sent the with other 1
1.0 ':'“‘:‘5;““995 | over created LiveSwitch m_'e_m‘”:'] 1
WebRTC data . 5 Cloud media participants via
operated and Ml 10 messages | channels and J,::;s,‘-;: p; .ggmejt server LiveSwitch !
& ion :
vice-versa ! vice-versa Array ! Cloud media , JavaScript Object
I server 1 Notation (JSON)
1 DCIA 1 Web Tokens
e e o oo oo o o e o o o e e - - - o
Incoming/Outgoing
Data Channels Videoconference Media
I /7
Frozen Mountain's I
LiveSwitch Cloud Audio/Video Streams

Media Server

Data Channels

L______E

Incoming/Outgoing
Videoconference Media

Fig. 13. The centralized architecture and signal flow, using Frozen Mountain’s LiveSwitch media server, and a NodeJS authorization

server.

fore we sought to find an architecture that would have the
smallest impact on the test computers” CPU.

In Australia the National Broadband Network, the only
public wired Internet service, aims to provide at least 50
Mbps downstream bandwidth to 90% of the population
[56,57]. Currently the top speed tier delivers bandwidth no
higher than 100 Mbps. We limited the experimental envi-
ronment to 50 Mbps and 100 Mbps as typical client and
server Internet connection speeds, respectively, and con-
sequently examined the implications these limits present

for the deployment of the DCF with and without a central
server.

4.2 Testing Environment

Table 2 summarizes the three computers used to conduct
evaluations of the DCF in the various connection archi-
tectures. Each computer accessed the Internet via discrete
networks, specifically a standard residential Internet con-
nection, the University of Newcastle’s VPN, and a wireless
4G connection.

f'

Gateway Server

—
Token Registration, Signaling

-

LiveSwitch
Cloud
Server

Media Server

—
Audio-Visual Streams

EE—.

-

Data Server

|
Control Data Streams

Text/Chat Messages
—_—

Fig. 14. The LiveSwitch Cloud server stack, consisting of a Gateway Server, Media Server, and Data Server.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

421

STICKLAND ET AL

Table 2. Specifications of computers used for experiments.

Specifications Network Access
Local Client Dell Latitude VDSL Hybrid
5480 PC Intel Fiber Coaxial
Core i5-7300U Max. 50/ (down-
CPU @ 2.60 GHz load/upload)

Remote Clients

Authentication
Server

16 GB RAM
Windows 10 1909
Enterprise 64-bit
OS Chrome 83
Browser Cubase
Pro 10.5.20 DAW
Custom-Built
ASRock PC Intel
Core i7-8700K
CPU @ 3.70 GHz
32 GB RAM
Windows 10
1909 Pro 64-bit
OS Chrome 83
Browser Cubase
Pro 10.5.20 DAW
Samsung PC Intel
Core i7-3610QM
CPU @ 2.30 GHz
12 GB RAM

Mbps Residential
Internet access

4G Wireless
Broadband Max.
110/15 Mbps

VDSL Hybrid
Fiber Coaxial
Max. 50/ Mbps
VPN

Windows 10 1909
Home 64-bit OS

Table 3. Maximum VP8 codec parameter values for
real-time streaming.

Parameter Value
Frame Width 640 pixels
Frame Height 480 pixels
Target Framerate 15 fps
Bitrate 500 kbps

We determined at the outset that the Media Server (see
Fig. 14) was to operate as an MCU. This approach pro-
vided the flexibility in the on-screen video layout and also
outsourced the video transcoding to the LiveSwitch Cloud
server to free up as much local CPU as possible. Further-
more we restricted the Media Server to only implement
the VP8 video codec [58] due to its high optimization
rate and compatibility with group videoconferencing [59].
Maximum parameter values were set based on The WebM
Project’s recommended settings for real-time constant bi-
trate encoding and streaming (see Table 3) [60].

Similarly the Media Server was restricted to only imple-
ment the Opus audio codec with a maximum bitrate of 48
kbps, slightly higher than the maximum rate recommended
for full-band speech given a frame duration of 20 ms (see
Table 4) [61].

4.3 Client-Side CPU Performance

Testing of the mesh architecture demonstrated that DAW-
based real-time collaboration was indeed possible, and fur-
ther, multiple peer connections could provide equitable ac-
cess and editing capabilities to all the collaborators [4].
Mesh configurations however can place considerable strain

422

PAPERS

Table 4. Bitrate “sweet spots” for the Opus codec (frame
duration = 20 ms).

Configuration Bitrate “Sweet Spot” (kbps)

Narrow-band Speech 8-12
Wide-band Speech 16-20
Full-band Speech 28 -40
Full-band Mono Music 48 - 64
Full-band Stereo Music 64 - 128

Mesh/Mixing/Hybrid Architectures: Client CPU Performance (Chrome)

Remote Client
,Disconnections

¥ Mesh -

v MCU [Mixing)
v | Hybrid —

CPU Usage %

Time (sec)

Fig. 15. The percentage of CPU usage by the web browser
(Chrome 83) in each of the three connection architectures.

Mesh/Mixing/Hybrid Architectures: Client CPU Performance (Cubase Pro 10.5)

Mesh
MCU (Mixing)
20 Hybrid

CPU Usage %

LA E a ! | Pl Pl

Time {sec)

Fig. 16. CPU usage by the DAW (Cubase Pro 10.5) in each of the
three connection architectures.

on a collaborator computer’s available CPU capacity when
adding peers to the online collaboration environment. At
one point during the test the processes of the two software
applications chrome.exe and cubasel0.exe alone consumed
amaximum 66.43% of the local client computer’s CPU (see
Figs. 15 and 16).

The inclusion of the cloud server in the DCF’s archi-
tecture provides enormous benefits for the client compared
to a mesh architecture. Outsourcing the audio-visual mix-
ing, transcoding, and routing to the Media Server gener-
ally results in significantly lower demands on a client’s
CPU, primarily due to the reduced amount of processing
the web browser is required to undertake. Fig. 15 also plots
Chrome’s rate of processing with both Media and Data
servers functioning as an MCU and with a hybrid architec-
ture of an MCU Media Server and SFU Data Server.

Across a test with seven peer connections, Chrome’s
baseline CPU usage is similar in both the MCU and hy-
brid environments; however, interestingly, the inclusion of
the SFU did see some spikes in CPU consumption not seen
in the purely MCU-based configuration. Whereas the mesh
architecture demonstrated peak CPU usage of 60%, the de-
ployment of the MCU and hybrid architectures resulted in

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

Video and Audio Packets
Sent/Received

Sent
Received

sy wd

03:00

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Video and Avudio litter

Video
Audio

B

SPUOCIBS||[IW

01:00 02:00

(b)

03:00

Fig. 17. (a) The Media Server’s video and audio packets sent and received; and (b) video and audio jitter for a typical peer connection

over a 10-peer connection test.

peaks of 22.4% and 49.8% on the local client, respectively.
This reduction, particularly that of the MCU-based archi-
tecture, provides sufficient enough headroom for the DAW
application to perform relatively intensive audio processing
before exceeding the computer’s CPU capacity.

Across all three architectures, as expected, there was no
difference in Cubase Pro’s CPU consumption, as illustrated
in Fig. 16. In all three instances CPU usage hovered be-
tween 5% and 12% while performing basic playback, level
fader, pan pot, and audio compression parameter changes,
irrespective of the number of peer connections at any given
moment.

4.4 Bandwidth Usage

This section presents the results of bandwidth usage, be-
ginning with server-side bandwidth usage results generated
by an MCU Media Server, and both MCU and SFU con-
figurations for the Data Server. We then present client-side
bandwidth usage when deploying the client in a mesh ar-
chitecture, with MCU-configured Media and Data Servers,
and with a hybrid MCU Media Server and SFU Data Server
architecture.

4.4.1 Server-Side Results

In analyzing the server-side LiveSwitch Cloud server re-
quirements, we present the Data Server’s bandwidth usage
when operating as either an MCU or SFU. The Data Server

Video Packets Lost

sy red

, | A

01:00 02:00

(@)

bo

03:00

receives, mixes, and transmits the DCF’s MIDI event mes-
sages and text messages generated by the chat feature.
Audio/Video Transmission by Media Server (MCU Mode):

Video Performance: A test with ten simultaneous peer
connections demonstrated that a typical connection
encountered consistent video streaming performance,
with steady video streaming rates, minimal received
packet loss, and exceptionally low jitter (see Figs. 17
and 18). The results confirmed the suitability of the
LiveSwitch Cloud Media Server’s video configuration
settings (see Table 3), particularly the choice of the
VP8 codec and maximum parameter settings.

Audio Performance: The test as mentioned above also
produced positive results for the Media Server’s audio
streaming, with the Opus codec (see Table 4) provid-
ing consistent streaming rates across the entirety of
the test for a typical peer connection, as seen in Fig.
17. The connection had more than 400,000 packets of
audio data received during the test and only just over
150 packets lost (see Fig. 18), resulting in a loss per-
centage of approximately 0.038% spanning the entire
collaboration session.

In contrast to the Media Server’s video performance,
the audio stream connection did encounter some entirely
expected jitter. Fig. 17(b) demonstrates that after an initial
peak jitter of around 10 ms the typical jitter encountered

Audio Packets Lost

s ed

02:00

(b)

01:00 03:00

Fig. 18. The Media Server’s lost (a) video and (b) audio packets for a typical peer connection over a 10-peer connection test.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

423

STICKLAND ET AL

MCU vs SFU Bandwidth Usage

&

Bandwidth {Mbps)

2 3 4 b 6 2 8 9 10

No. of Peers
s NAC) s SFL

Fig. 19. Bandwidth usage of Data Server serving up to ten simul-
taneous peers using an MCU and SFU modes.

by the audio connection sat around 5 ms. It is significant to
note that the quality of the videoconferencing audio is of
secondary importance to the collaboration since its usage
is for videoconferencing purposes only.

Data Transmission by Data Server (MCU vsSFU): When
deciding on the Data Server’s data transmission modes,
test results produced markedly different bandwidth usage
between the MCU and SFU server modes of operation (see
Fig. 19). In an MCU architecture each endpoint establishes
a single bidirectional connection with the Data Server:

G = P

where ¢; specifies the total number of connections and p;
specifies the total number of peers.

In contrast the SFU architecture establishes a ‘single-up,
many-down’ framework:

c = (p)?

Testing was conducted with up to ten simultaneous client
connections to determine the average bandwidth usage with
the Data Server operating in MCU and SFU modes of trans-
mission. The DCF created a maximum of ten connections
in the MCU architecture and saw a linear increase in band-
width usage with the addition of each new connection (see
Fig. 19). In stark contrast, with the Data Server functioning
in SFU mode, the framework created a maximum of 100
discrete connections to accommodate the 10 simultaneous
clients, resulting in an exponential increase in bandwidth
usage. To illustrate the point further, at 10 connected peers,
the MCU used an average 15.4 Mbps bandwidth, whereas
the SFU used an average of 160 Mbps.

4.4.2 Client-Side Results

In this section we report on a test client’s bandwidth
usage in the following connection architectures:

1. A mesh architecture consisting of several P2P con-
nections;

2. Amixing architecture using an MCU for audio/video
communication and DAW control and text/chat data
transmissions; and

3. Ahybrid architecture using an MCU for audio/video
communication transmissions and an SFU for data
transmissions.

424

PAPERS

Mesh Architecture: Each new addition of a client to the
collaboration in a Mesh architecture deployment saw an
exponential increase in both bandwidth usage (see Fig. 20)
and latency contributing to the marked instability exhibited
when a seventh and eighth client joined the group. Despite
some evident jitter when the fourth client joined the archi-
tecture the DCF demonstrated relative stability up to and
including a mesh of six clients, constituting 21 discrete
connections across the collaboration.

MCUMedia and Data Sreams: Employing an MCU for
both media and data transmission in the DCF provides for
a less bandwidth-intensive environment for each client. An
MCU connection architecture only requires the establish-
ment of one outgoing and one incoming connection with
each of the LiveSwitch servers (Media and Data). Rather
than observing an exponential increase in bandwidth usage
as seen in the mesh architecture (see Fig. 20), Fig. 21 shows
that average media stream transmission and reception over
UDP at the client is comparatively steady, with bandwidth
usage of 0.544 Mbps for outgoing and 0.626 Mbps for in-
coming audio-visual channels. The media streams also in-
clude a small component comprising of Session Traversal
Utilities for NAT (STUN) requests and responses to identify
and monitor the presence of the remote collaborators.

With the Data Server operating as an MCU, data stream
bandwidth usage sees a spike at the establishment of the
connection between the client and server as they complete
STUN request/response and Datagram Transport Layer Se-
curity version 1.2 (DTLS v1.2) handshake protocols, as
illustrated in Fig. 22. The traces confirm the success of the
JavaScript code written to avoid feedback loops, with the
server sending the client a higher bandwidth of remotely
generated DTLS v1.2 application data with each new client
addition than that sent by the client. Again, the MCU ar-
chitecture provides the DCF with a modest bandwidth re-
quirement when transmitting and receiving DAW-related
control data, even when, as is the case in Fig. 22, the client
is acting as the MTC and MMC master and generating
quarter frame and machine control timing and navigation
messages for the collaboration. Average outgoing and in-
coming streaming rates sit between 3.56 and 5.35 kbps and
4.12 and 10.21 kbps, respectively.

HybridMCU (Media) and SFU (Data): When configur-
ing the Data Server as an SFU, incoming and outgoing
data stream bandwidth usage mirrored each other directly
(see Fig. 23). Additionally the bandwidth usage, while sig-
nificantly lower than that seen in the mesh architecture,
demonstrated a linear increase with the addition of each
new client to the collaboration for the client and server
alike, peaking at 37.22 kbps for outgoing and 42.3 kbps for
incoming data streams during a test with a maximum of 9
clients.

4.5 Scalability

For scalability we use the following limits in terms of
CPU and bandwidth. The CPU usage at the client should
not exceed a point where degradation in performance and
connection drops occur. For bandwidth usage we kept an

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Mesh Architecture: Client Bandwidth Usage

i Disconnections
Peers 1/8
2000
e Peers 1/7
0
O 600 Peers 1/6
£,
o0 Peers 1/5
2 1200 |- Peers 1/4
Q
&
800 - Peers 173
Peers 172
400 - Increased fluctuations
o L L L :
n 105 140 175 210
Time (sec)

Fig. 20. The bandwidth usage with the addition of new clients to the mesh connection architecture.

upper limit of 50 Mbps client-side and 100 Mbps server-
side in total for both of the LiveSwitch Media and Data
servers. Using the 100 Mbps bandwidth limit in total for
both server-side data and media streams is conservative for
the LiveSwitch Cloud server. However a 100-Mbps con-

nection is reasonable if hosting a LiveSwitch media server
in-house.

As a result of the Mesh architecture test we deter-
mined a maximum of six peers were possible before the
performance of the DCIA was noticeably and detrimen-

Client Outgoing/Incoming UDP Media S$tream Bandwidth (50-interval SMA)

0.5 0.6 0.7

0.3

Bandwidth (Mbps)
0.4

0.2

0.1

Outgoing
Incoming ——

200

300 400

Time (sec)

Fig. 21. Outgoing and incoming average UDP media stream bandwidth usage at the client to and from an MCU Media Server (50-interval

simple moving average).

Client Outgoing/Incoming MCU Data Stream Bandwidth (50-interval SMA)

g Remote ":\
Client 5 R 1 al
g NAT Traversal/DTLS Remote (‘erzireﬁmof : ~
E s Handshake Spike Client 4_, i
% Remot ;
emote H
=2 Remote 3 :
< § Client 2 Client 3 E
o A Remote = = ool
H . 3 H
£ |fedeJASR) S v
c3 A 4 T i
o]
@ Outgoing —
8_ Outgoing Bandwidth Range -----
o Incoming —
[/ Incoming Bandwidith Range ===~
0 100 200 300 400
lime (sec)

Fig. 22. Outgoing and incoming average SCTP data stream bandwidth usage at the client to and from an MCU Data Server (50-interval

simple moving average).

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

425

STICKLAND ET AL

PAPERS

Client Outgoing/Incoming SFU Data Stream Bandwidth (50-interval SMA)

Remole
3 Client8 |
o Remote ¥ g
- Client 7 /a ‘;—n\"
a Remote F O A e R
Ie) Client 6 At
5 2 Remote Paged e
e Client 5 A |
£ . & i
6 Rc.moh: b LY
B Client 4 -t L/
2 Remole A
Dy i s f
g S Remote Client3 "
Remole ciient 2 A -
= Client 1 + Cutgoing
o Incoming ——

b {]j

L L " L L 1

0 250 500 750 1000 1250

Time (sec)

Fig. 23. Outgoing and incoming average SCTP data stream bandwidth usage at the client to and from an SFU Data Server (50-interval

simple moving average).

Average Bandwidth per No. of Peers MCU

8 8 &

o

10 12 14 16 18 20 22 24 26 28 30
No. of Peers

2 4 6 8

Bandwidth {Mbps)

— B andwidth per No. of Peers

Fig. 24. Average bandwidth usage at a client to serve up to 30
simultaneous peers.

tally affected, as illustrated in Fig. 20. When utilizing an
SFU architecture for the Data Server we reached the 100-
Mbps limit at the server-side after the 7th peer connection
and before the 8th peer connection joined the collabora-
tion session (see Fig. 19). Employing an MCU architec-
ture for the Data Server, the bandwidth usage scaled lin-
early at the client-side with a maximum average bandwidth
of 48.5 Mbps (see Fig. 24) for a test with up to 30 si-
multaneous peer connections. This increase in scalability
was a significant improvement from the mesh architec-
ture, which saw an exponential increase in bandwidth usage
as the number of simultaneous peer connections increased
(see Fig. 20).

Fig. 25 traces the bandwidth usage for the two MCU-
configured Media and Data servers scaling to 30 peers,
with the Data Server requiring a maximum average band-
width of 48.08 Mbps. As a combined server architecture
the LiveSwitch Cloud server demonstrated an ability to ac-
commodate 30 simultaneous peers while requiring less than
100 Mbps of bandwidth (see Fig. 26).

4.6 Discussion

This section presents the results of the experimental DCF
implementation using typical computers and public Inter-
net connections (see Table 2) for mesh, mixing, and hybrid
mixing/routing connection architectures. The design and

426

Average Bandwidth Data & Media MCU Servers

10

2345678 %101112131415161718192021 222324 2526 27 262930

Bandwidth (Mbps)

No. of Peers

Data MCU Media MCU

Fig. 25. Average bandwidth usage of the Data and Media Servers
operating as MCUs at the server-side.

Total Bandwidth LiveSwitch Server Stack
120
100

8
:‘ I |||||“““|
0 nlilllillilll

2345 21222324

4252627 2829 30

588

Bandwidth (Mbps)
3

6 7 8 %1011121314151617 181920212

No. of Peers
mData MCU = Media MCU

Fig. 26. The LiveSwitch server architecture’s total bandwidth us-
age for serving up to 30 simultaneous peers.

implementation of the DCF delivered all four of the re-
quirements identified in SEc. O:

1. A synchronous mode of operation;

2. Scaling to multiple collaborators;

3. Access to high-resolution audio assets by each col-
laborator; and

4. Access/control of DAW project for all collaborators.

The DCF meets all of the requirements above (see Table
5) and facilitates novel online DAW collaboration mod-
els that realize use-case scenarios in professional and ed-

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

PAPERS

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Table 5. The DCF and dimensions for online DAW collaboration platforms for music post-production.

High-Resolution Audio

(> 44.1 kHz, 16-bit,
Lossless, Uncompressed)

Equal Access to/Control

Scalable (> 2 Peers) of the DAW Project

DCF Connection Synchronous Interactions
Architecture & Communication
Mesh (Peer to Peer) Vv
Hybrid (MCU mode - Vv

Media Server and SFU
mode - Data Server)

Mixing (MCU mode - i
Media and Data Server)

v V/ (< 6 peers) v
v V (=7 peers) v
v v/ (< 30 peers) v

ucational contexts, such as those described in Scenarios
land 2.

The mesh architecture avoided the overhead of using a
centralized media server but could scale to only six collab-
orators in the experimental environment. The mesh archi-
tecture does however have an overhead of a signaling server
to establish the various P2P connections.

For the mixing and hybrid mixing/routing architecture
experiments, we used the LiveSwitch Cloud server for
the centralized connection architectures. Deploying the
LiveSwitch as an MCU-configured Media Server, together
with an SFU-configured Data Server, scaled up to 7 peers
before reaching the 100-Mbps bandwidth threshold at the
server-side (see Fig. 19). In contrast deploying LiveSwitch
as MCU-configured Media and Data Servers scaled to 30
peers before reaching the server-side bandwidth threshold
of 100 Mbps (see Fig. 26) and 50 Mbps at the client (see
Fig. 24). Therefore this result demonstrates the advantage
of employing an MCU-configured Data Server over an SFU
in a centralized architecture for higher scalability.

4.7 Limitations

The design of DCF requires that all collaborators share
the DAW project, including high-resolution audio assets,
before the collaboration session. This approach enables to
scale to many collaborators in a synchronous mode of col-
laboration without the need to transmit bandwidth-intensive
high-resolution audio data. However this design does limit
the collaboration session to work with already shared DAW
project files and audio assets. Incorporation of new high-
resolution audio assets or DAW project files cannot occur
during a collaboration session without synchronizing these
data files among collaborators during the session, which
can cause delays. However note that the DCF enables use-
case scenarios such as discussed in SEc. 0, which shares
the DAW project and high-resolution audio assets among
all collaborators before the collaboration session.

We identified some practical limitations in DCF imple-
mentation. As discussed earlier in SEC. 3.1.1, we anticipated
the MIDI 1.0 paradigm, which mandates a range of 0-127
for all CC values, to essentially restrict the resolution of
any of the DAW mixing functions mapped to CC events.
This restriction produced slightly different fader and pot
positions or values between the DAW instantiation gener-
ating the MIDI control data and those DAWS receiving the
control data via the DCF.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

During testing we also identified a concurrency issue
when two or more collaborators make simultaneous re-
mote changes to the same DAW function, such as a level
fader, plug-in parameter, or mute button. In such circum-
stances execution of the various changes was according to
the order the control messages were received by each col-
laborator’s DAW instantiation. Consequently we observed
erratic jumps in fader and pan-pot positions, buttons engag-
ing and disengaging, and variable parameter values. While
communication among collaborators via the DCF’s video-
conferencing can assist with resolving such situations as
they arise, we believe the framework should also include
features for a more elegant solution to resolve conflicts due
to concurrently executing opposing actions among collabo-
rators, which is discussed as a part of future work (see SEC.
5 for further discussion).

The range of DAW functions the DCF can remotely con-
trol and execute is determined mainly by the DAW plat-
form’s capacity to generate MIDI control data when oper-
ated locally. At this time Steinberg’s Generic Remote fea-
ture, integrated into Cubase Pro, only transmits MIDI event
messages for those functions one would reasonably expect
to see on control surface hardware. Therefore, while most
of the mix console operations (level faders; pan-pots; mute,
solo, and select buttons; plug-in parameters; and transport
functions) did indeed generate MIDI event messages and
transmit them to the DCIA in testing, other non-mixer func-
tions, such as quantization, adding new tracks, and opening
various editors, for example, will not. Nevertheless if Stein-
berg were to expand the Generic Remote feature to transmit
MIDI event messages mapped to any of Cubase Pro’s func-
tions, the DCF would remotely control and execute these
functions as well.

The current LiveSwitch data channels are not the full im-
plementation of WebRTC data channels but are instead “op-
timized for small chunks of binary data or text messages”
[62]. Frozen Mountain is presently developing their im-
plementation by incorporating dynamic congestion control
and working on the partial-reliability feature set provided
by SCTP, including the maxPacketLifeTime and maxRe-
transmits unsigned shorts and ordered Boolean. Until dy-
namic congestion control is in place there exists the poten-
tial for the DCF’s control data transmission to encounter
static throttling [62]. In testing, such throttling was no-
ticeable on occasion during extended periods of playback
that necessitated long MTC quarter frame streams. This

427

STICKLAND ET AL

issue however does not arise when deploying the DCF in
a Mesh architecture, since the data channels in this itera-
tion are fully implemented WebRTC data channels, with a
low number of maximum retransmissions, and permitted
unordered delivery of packets.

5 CONCLUSION AND FUTURE WORK

In summary, this research has identified a shortfall in
existing online collaboration platforms to cater to use-case
scenarios such as in professional and educational audio
mixing of recorded music contexts. Existing collaboration
models cannot simultaneously provide real-time interac-
tions among collaborators while providing access to audio
mixing techniques via a collaborative DAW project with the
ability to mix, process, and monitor high-resolution audio
assets in all locations. This paper has presented a unique
approach that addresses this gap by providing an online
DAW collaboration framework that enables a collaborative
session that:

e Delivers synchronous mode of interactions with
videoconferencing and chat communications;

e Provides a means of monitoring mixed, processed,
and mastered high-resolution audio assets by each
collaborator;

e Delivers an environment that is scalable to multi-
ple participants using standard residential Internet
connections; and

o Offers real-time access to and mixing of a linked
DAW project by all participants.

The platform was successfully implemented over mesh
(decentralized) and routing and mixing (centralized) con-
nection architectures and evaluated on CPU performance,
bandwidth usage, and scalability. The experiments achieved
scalability of up to 30 simultaneous, synchronous collabo-
rators on standard client computers and 50-Mbps Internet
client connection, with the incorporation of an MCU Me-
dia/Data server architecture. The results also exhibited fea-
sible collaborations of six or fewer participants in a decen-
tralized P2P mesh architecture. This work demonstrated the
DCF’s ability to meet the four critical dimensions for online
collaborative professional and educational audio mixing ac-
tivities, opening novel ways to collaborate in online music
production activities in the future.

There are several areas we are working on to improve the
DCF in the future:

e User evaluations: Presently we are deploying the
DCEF in real-world applications, with Australian pro-
fessional mix engineers and musicians, and evaluat-
ing its capabilities from a user perspective.

o Cross-DAW Interoperability: We plan to commence
investigations into other DAW platforms to deter-
mine their capacity to generate and receive con-
trol data event messages mapped to DAW functions.
These investigations have the potential to lead to
the generation of cross-DAW translation templates,

428

PAPERS

which the DCF can implement to link like-functions
across a range of DAW platforms.

e High-resolution control for MIDI commands: We
also plan to improve the resolution issues that MIDI
1.0 CC values currently present by accommodating
the MIDI 2.0 Universal MIDI Packet and Capability
Inquiry protocols [63], once implemented in the var-
ious DAW platforms. Work is already underway to
realize this implementation; for example Steinberg
recently updated their VST 3 software development
kit to support the MIDI 2.0 standard [64]. MIDI 2.0
provides a 32-bit resolution, compared with the 7-
bit resolution MIDI 1.0 currently delivers. MIDI 2.0
also provides us with the opportunity to investigate
and experiment with its Profile Configuration and
Property Exchange capabilities, which have the po-
tential to enhance the DCF’s cross-DAW platform
compatibility.

e Handling conflicting actions by collaborators: We
are investigating implementing two approaches to
address the issue of collaborators conducting oppos-
ing actions simultaneously:

1. Centralized approach: In a centralized approach an
assigned “host” of the collaboration session ‘con-
trols’ the transmission of control data by collabora-
tors. The host can enable/disable each collaborator
to transmit control data by implementing permis-
sions at the Data Server in a centralized connection
architecture. Such a feature can allow only the dis-
semination of ‘enabled’ collaborators’ control data
while all other control data is filtered. We see the im-
plementation of this approach in situations such as
the educational use-case scenario, where the online
tutor can be the “host” enabling/disabling student
control data transmissions.

2. Decentralized approach: In a decentralized approach
each collaborator can filter other collaborators’ ac-
tions by determining which of the control data
streams will transmit to their local DAW instanti-
ation.

In the above approaches the possibility of conflicting ac-
tions remains if more than one collaborator is “allowed” to
transmit control data. We plan to investigate means to au-
tomatically identify conflict actions and resolve them, such
as buffering recent control data and filtering out conflicting
actions from different collaborators.

6 ACKNOWLEDGMENT

This research is supported by the Australian Government
Research Training Program Scholarship.

7 REFERENCES

[1] V. R. Melchior, “High-Resolution Audio: A History
and Perspective,” J. Audio Eng. Soc., vol. 67, no. 5, pp. 246—
257 (2019 May). https://doi.org/10.17743/jaes.2018.0056.

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

https://doi.org/10.17743/jaes.2018.0056

PAPERS

[2] A.Prasand C. Guastavino, “Sampling Rate Discrim-
ination: 44.1 kHz vs. 88.2 kHz,” presented at the 128th
Convention of the Audio Engineering Society (2010 May),
paper 8101.

[3] S. Stickland, N. Scott and R. Athauda, “A Frame-
work for Real-Time Online Collaboration in Music Pro-
duction,” in Proceedings of the ACMC2018: Conference of
the Australasian Computer Music Association, pp. 79-86
(Perth, Australia) (2018 Dec.).

[4] S. Stickland, R. Athauda and N. Scott, “Design of
a Real-Time Multiparty DAW Collaboration Application
Using Web MIDI and WebRTC APIs,” in Proceedings of
the International Web Audio Conference, pp. 59-64 (Trond-
heim, Norway) (2019 Dec.).

[5] Source Elements, “Source-Connect Pro Version 3.9,”

http://source-elements.com/products/source-connect/versions

(accessed Apr. 15, 2018).

[6] Steinberg Media Technologies GmbH, “VST
Connect Pro Version 5.5, https://new.steinberg.net/
vst-connect/ (accessed May 14, 2021).

[7] Soundwhale, “Soundwhale: Audio Post and Mu-
sic Collaboration Software,” https://soundwhale.com/
(accessed Jul. 14, 2020).

[8] Audiomovers LLC, “Audiomovers Listento,” https://
audiomovers.com/ (accessed Jul. 8, 2020).

[9] Sessionwire Communications Inc., “Sessionwire,”
https://www.sessionwire.com/ (accessed Jul. 20, 2020).

[10] ConnectionOpen, “ConnectionOpen | On-
line Recording and Collaboration,” https://www.
connectionopen.com/ (accessed Jul. 27, 2020).

[11] N. Bouillot, M. Brulé and J. R. Cooperstock, “Per-
formance Metrics for Network Audio Systems: Method-
ology and Comparison,” presented at the 127th Conven-
tion of the Audio Engineering Society (2009 Oct.), paper
7940.

[12] C. Chafe, “Tapping Into the Internet as an
Acoustical/Musical Medium,” Contemp. Music Rev.,
vol. 28, no. 4-5, pp. 413-420 (2009 Aug.). https://
doi.org/10.1080/07494460903422362.

[13] Production Expert, “Streaming Mixes From
DAW to Web Browsers Using LISTENTO Plug-
in by Audiomovers,” https://www.youtube.com/watch?v=
jlgYNOQNGNE (accessed Jul. 16, 2020).

[14] Avid Technology, Inc., “Producing Software
for Music - Cloud Collaboration - Pro Tools,”
https://www.avid.com/pro-tools/cloud-collaboration (ac-
cessed Mar. 7, 2020).

[15] Steinberg Media Technologies GmbH, “VST Tran-
sit | Steinberg,” https://www.steinberg.net/en/products/
vst/vst_transit.html?et_cid=15&et_lid=22&et_sub=VST%
20Transit (accessed Mar. 7, 2020).

[16] Spotify USA Inc / Spotify AB, “Soundtrap -
Make Music Online,” https://www.soundtrap.com/ (ac-
cessed Sep. 17, 2020).

[17] BandLab Technologies, “BandLab: Make Mu-
sic Online,” https://www.bandlab.com/ (accessed Sep. 9,
2020).

[18] Fraunhofer-Gesellschaft, “The AAC-ELD
Family for High Quality Communication Services,”

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/
wp/FraunhoferllS_Technical-Paper AAC-ELD-family.pdf
(accessed Feb. 21, 2018).

[19] Xiph.Org, “Xiph.org Vorbis Audio Compression,”
https://xiph.org/vorbis/ (accessed Feb. 20, 2020).

[20] Source Elements, Source-Connect Pro 3.9 User
Guide (Source Elements, Evanston, IL, 2016).

[21] Steinberg Media Technologies GmbH, VST Con-
nect 5.5 Operation Manual (Steinberg Media Technologies
GmbH, Hamburg, Germany, 2021).

[22] WavPack, “WavPack: Hybrid Lossless Audio Com-
pression,” http://www.wavpack.com/ (accessed Jul. 23,
2018).

[23] Xiph.Org Foundation, “FLAC: Free Lossless Audio
Codec,” https://xiph.org/flac/index.html (accessed Oct. 26,
2020).

[24] Steinberg Media Technologies GmbH, “Technolo-
gies | Steinberg,” https://www.steinberg.net/en/company/
technologies.html (accessed Jun. 17, 2020).

[25] Apple Inc., “What Is Core Audio?” https://
developer.apple.com/library/archive/documentation/
MusicAudio/Conceptual/CoreAudioOverview/
WhatisCoreAudio/WhatisCoreAudio.html
Jun. 16, 2020).

[26] Apple Inc., “AudioUnit | Apple Developer Doc-
umentation,” https://developer.apple.com/documentation/
audiounit (accessed Jun. 16, 2020).

[27] Avid Technology, Inc., “AAX Connectivity
Toolkit,” https://www.avid.com/alliance-partner-program/
aax-connectivity-toolkit (accessed Jun. 16, 2020).

[28] wac2017 gmul, “Web Audio Conference 2017
(WAC2017 QMUL) Day 1 - Afternoon,” https://www.
youtube.com/watch?v=0pUeyRRPpCo&feature
=youtu.be&t=957 (accessed Jun. 2, 2020).

[29] K. Brandenburg, “MP3 and AAC Explained,” in
Proceedings of the Audio Engineering Society 17th Inter-
national Conference: High-Quality Audio Coding (1999
Sep.), paper 17-0009.

[30] Soundwhale, *Soundwhale Open Source Compo-
nents,” www.soundwhale.com/opensource (accessed Jul.
14, 2020).

[31] Xiph.Org Foundation, “Opus Interactive Audio
Codec,” http://opus-codec.org/ (accessed May 28, 2018).

[32] N. Brock, M. Daniels, S. Morris and P. Otto,
“Audio-Video Synchronization for Post-Production Over
Managed Wide-Area Networks,” presented at the 128th
Convention of the Audio Engineering Society (2010 May),
paper 8040.

[33] N. Brock, M. Daniels, S. Morris and P.
Otto, “A Collaborative Computing Model for Audio
Post-Production,” Future Gen. Comp. Syst., vol. 27,
no. 7, pp. 935-943 (2011 Jul.). https://doi.org/10.1016/
j-future.2011.02.005.

[34] N.Brock, M. Daniels, S. Morrisand P. Otto, “Long-
Distance Uncompressed Audio Transmission Over IP for
Postproduction,” presented at the 127th Convention of the
Audio Engineering Society (2009 Oct.), paper 7945.

[35] M. Wenzel and C. Meinel, “Full-Body WebRTC
Video Conferencing in a Web-Based Real-Time Collabora-

(accessed

429

http://source-elements.com/products/source-connect/versions
https://new.steinberg.net/vst-connect/
https://new.steinberg.net/vst-connect/
https://soundwhale.com/
https://soundwhale.com/
https://audiomovers.com/(accessed
https://audiomovers.com/(accessed
https://www.sessionwire.com/
https://www.connectionopen.com/
https://www.connectionopen.com/
https://doi.org/10.1080/07494460903422362
https://doi.org/10.1080/07494460903422362
https://www.youtube.com/watch?v=jlgYNOQnGnE
https://www.youtube.com/watch?v=jlgYNOQnGnE
https://www.avid.com/pro-tools/cloud-collaboration
https://www.steinberg.net/en/products/vst/vst_transit.html?et_cid=15
elax &et_lid=22
elax &et_sub=VST%20Transit
https://www.steinberg.net/en/products/vst/vst_transit.html?et_cid=15
elax &et_lid=22
elax &et_sub=VST%20Transit
https://www.steinberg.net/en/products/vst/vst_transit.html?et_cid=15
elax &et_lid=22
elax &et_sub=VST%20Transit
https://www.soundtrap.com/
https://www.bandlab.com/
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_Technical-Paper_AAC-ELD-family.pdf
https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_Technical-Paper_AAC-ELD-family.pdf
https://xiph.org/vorbis/
http://www.wavpack.com/
https://xiph.org/flac/index.html
https://www.steinberg.net/en/company/technologies.html
https://www.steinberg.net/en/company/technologies.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html
https://developer.apple.com/library/archive/documentation/MusicAudio/Conceptual/CoreAudioOverview/WhatisCoreAudio/WhatisCoreAudio.html
https://developer.apple.com/documentation/audiounit
https://developer.apple.com/documentation/audiounit
https://www.avid.com/alliance-partner-program/aax-connectivity-toolkit
https://www.avid.com/alliance-partner-program/aax-connectivity-toolkit
https://www.youtube.com/watch?v=OpUeyRRPpCo
elax &feature=youtu.be
elax &t=957
https://www.youtube.com/watch?v=OpUeyRRPpCo
elax &feature=youtu.be
elax &t=957
https://www.youtube.com/watch?v=OpUeyRRPpCo
elax &feature=youtu.be
elax &t=957
http://www.soundwhale.com/opensource
http://opus-codec.org/(accessed
https://doi.org/10.1016/j.future.2011.02.005
https://doi.org/10.1016/j.future.2011.02.005

STICKLAND ET AL

tion System,” in Proceedingsof the | EEE 20th Inter national
Conference on Computer Supported Cooperative Work
in Design (CSCWD), pp. 334-339 (Nanchang, China)
(2016 May). https://doi.org/10.1109/CSCWD.2016.
7566010.

[36] S. Petrangeli, D. Pauwels, J. van der Hooft,
M. Ziak, J. Slowack, T. Wauters and F. De Turck,
“A Scalable WebRTC-Based Framework for Remote
Video Collaboration Applications,” Multimed. Tools
Appl., vol. 78, no. 6, pp. 7419-7452 (2019 Mar.).
https://doi.org/10.1007/s11042-018-6460-0.

[37] K. Fai Ng, M. Yan Ching, Y. Liu, T. Cai, L.
Li and W. Chou, “A P2P-MCU Approach to Multi-
Party Video Conference With WebRTC,” Int. J. Future
Comp. Comm., vol. 3, no. 5, pp. 319-324 (2014 Oct.).
https://doi.org/10.7763/ijfcc.2014.V3.319.

[38] R. A. Kirmizioglu and A. M. Tekalp,
“Multi-Party WebRTC Services Using Delay and
Bandwidth Aware SDN-Assisted IP Multicast-
ing of Scalable Video Over 5G Networks,” IEEE
Trans. Multimedia, vol. 22, no. 4, pp. 1005-1015
(2020 Apr.). https://doi.org/10.1109/TMM.2019.
2937170.

[39] S. Yoon, T. Na and H.-Y. Ryu, “An Implementa-
tion of Web-RTC Based Audio/Video Conferencing Sys-
tem on Virtualized Cloud,” in Proceedings of the 2016
IEEE International Conference on Consumer Electron-
ics (ICCE), pp. 133-134 (Las Vegas, NV) (2016 Jan.).
https://doi.org/10.1109/ICCE.2016.7430552.

[40] Steinberg Media Technologies GmbH, “Cubase
Pro Version 10.5.20,” https://www.steinberg.net/index.
php?id=14935&L=1 (accessed May 5, 2020).

[41] Cockos Inc., “REAPER Version 6.15,” https://
www.reaper.fm/download.php?from_reaper=1 (accessed
Oct. 20, 2020).

[42] The MIDI Association, “MIDI 1.0 Detailed Spec-
ification,” https://www.midi.org/specifications-old/item/
the-midi-1-0-specification (accessed Feb. 21, 2020).

[43] M. Wright, “OpenSound Control Specifica-
tion,” https://web.archive.org/web/20030914224904/

http://cnmat.berkeley.edu/OSC/OSC-spec.html (accessed
Mar. 21, 2020).
[44] Google WebRTC Team, “WebRTC,” https://

webrtc.org/ (accessed Feb. 20, 2020).

[45] J. Postel, “User Datagram Protocol (RFC 768),”
https://tools.ietf.org/pdf/rfc768.pdf (accessed Feb. 18,
2018).

[46] R. Stewart, ed., “Stream Control Transmission Pro-
tocol (RFC 4960),” https://tools.ietf.org/pdf/rfc4960.pdf
(accessed May 30, 2019).

[47] M. Adeyeye Oshin, |. Makitla and T. Fog-
will, “WebRTC Using JSON via XMLHttpRequest
and SIP Over WebSocket: Initial Signalling Over-
head Findings,” in Proceedings of the 9th Interna-
tional Conference on Web Information Systems and
Technologies (IEEE WEBIST) (Auchen, Germany) (2013
May).

[48] S. Shankland, “Google Hitches Opus Audio
Technology to WebRTC Star,” https://www.cnet.com/

430

PAPERS

news/google-hitches-opus-audio-technology-to-webrtc-star/
(accessed Jun. 10, 2018).

[49] J.-M. Valin, G. Maxwell, T. B. Terriberry and K.
\Vos, “High-Quality, Low-Delay Music Coding in the Opus
Codec,” presented at the 135th Convention of the Audio
Engineering Society (2013 Oct.), paper 8942.

[50] World Wide Web Consortium, “Web MIDI API,”
https://www.w3.0rg/TR/webmidi/ (accessed Jul. 30, 2018).

[51] Google LLC, “Chromium OS - The Chromium
Projects,” https://www.chromium.org/chromium-os (ac-
cessed Oct. 26, 2020).

[52] World Wide Web Consortium, “WebRTC
1.0: Real-Time Communication Between Browsers,”
https://www.w3.0rg/TR/webrtc/ (accessed Oct. 26, 2020).

[53] Frozen Mountain, “Massively Flexible Video,
Voice, & Messaging | Frozen Mountain,” https:/
www.frozenmountain.com/products-services/liveswitch/
(accessed Mar. 28, 2020).

[54] Steinberg Media Technologies GmbH, “Compare
the Versions of Cubase,” https://new.steinberg.net/cubase/
compare-editions/ (accessed Jun. 3, 2020).

[55] C. Cunningham, “How to Build the Best
PC for Music Production and Audio Editing,”
https://www.logicalincrements.com/articles/build-pc
-music-production-audio-daw (accessed Jun. 3, 2020).

[56] L. H. Campbell, S. Suessspeck and K. Hin-
ton, “The National Broadband Network: What Differ-
ence Will It Make to Broadband Availability in Aus-
tralia?” Aust. J. Telecomm. Digit. Econ., vol. 6, no. 1,
pp. 1-25 (2018 Mar.). https://doi.org/10.18080/ajtde.v6n1l.
141,

[57] M. A. Gregory, “How to Transition the National
Broadband Network to Fibre to the Premises,” Aust. J.
Telecomm. Digit. Econ., vol. 7, no. 1, pp. 57-67 (2019
Mar.). https://doi.org/10.18080/jtde.v7n1.182.

[58] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen,
P. Wilkins and Y. Xu, “VP8 Data Format and Decoding
Guide (RFC 6386),” https://tools.ietf.org/pdf/rfc6386.pdf
(accessed Mar. 5, 2020).

[59] T. Levent-Levi, “The Challenging Path to
WebRTC H.264 Video Codec Hardware Support,”
https://bloggeek.me/webrtc-h264-video-codec-hardware
-support/ (accessed Mar. 4, 2020).

[60] The WebM Project, “The WebM Project | VP8
Encode Parameter Guide,” https://www.webmproject.
org/docs/encoder-parameters/ (accessed Mar. 29, 2020).

[61] J.-M. Valin, K. VWos and T. B. Terriberry,
“Definition of the Opus Audio Codec (RFC 6716),”
https://tools.ietf.org/pdf/rfc6716.pdf (accessed May 29,
2018).

[62] Frozen Mountain, “JavaScript - LiveSwitch: Work-
ing with Data Channels,” https://help.frozenmountain.
com/docs/liveswitch/clients/javascript#Workingwith
DataChannels (accessed Mar. 24, 2020).

[63] The MIDI Association, “Details about MIDI
2.0TM, MIDI-CI, Profiles and Property Exchange,”
https://www.midi.org/midi-articles/details-about-midi-2-0
-midi-ci-profiles-and-property-exchange (accessed May
14, 2021).

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

https://doi.org/10.1109/CSCWD.2016.7566010
https://doi.org/10.1109/CSCWD.2016.7566010
https://doi.org/10.1007/s11042-018-6460-0
https://doi.org/10.7763/ijfcc.2014.V3.319
https://doi.org/10.1109/TMM.2019.2937170
https://doi.org/10.1109/TMM.2019.2937170
https://doi.org/10.1109/ICCE.2016.7430552
https://www.steinberg.net/index.php?id=14935
elax &L=1
https://www.steinberg.net/index.php?id=14935
elax &L=1
https://www.reaper.fm/download.php?from_reaper=1
https://www.reaper.fm/download.php?from_reaper=1
https://www.midi.org/specifications-old/item/the-midi-1-0-specification
https://www.midi.org/specifications-old/item/the-midi-1-0-specification
https://web.archive.org/web/20030914224904/http://cnmat.berkeley.edu/OSC/OSC-spec.html
http://cnmat.berkeley.edu/OSC/OSC-spec.html
https://webrtc.org/(accessed
https://webrtc.org/(accessed
https://tools.ietf.org/pdf/rfc768.pdf
https://tools.ietf.org/pdf/rfc4960.pdf
https://www.cnet.com/news/google-hitches-opus-audio-technology-to-webrtc-star/
https://www.w3.org/TR/webmidi/
https://www.chromium.org/chromium-os
https://www.w3.org/TR/webrtc/
https://www.frozenmountain.com/products-services/liveswitch/
https://www.frozenmountain.com/products-services/liveswitch/
https://new.steinberg.net/cubase/compare-editions/
https://new.steinberg.net/cubase/compare-editions/
https://www.logicalincrements.com/articles/build-pc-music-production-audio-daw
https://www.logicalincrements.com/articles/build-pc-music-production-audio-daw
https://doi.org/10.18080/ajtde.v6n1.141
https://doi.org/10.18080/ajtde.v6n1.141
https://doi.org/10.18080/jtde.v7n1.182
https://tools.ietf.org/pdf/rfc6386.pdf
https://bloggeek.me/webrtc-h264-video-codec-hardware-support/
https://bloggeek.me/webrtc-h264-video-codec-hardware-support/
https://www.webmproject.org/docs/encoder-parameters/
https://www.webmproject.org/docs/encoder-parameters/
https://tools.ietf.org/pdf/rfc6716.pdf
https://help.frozenmountain.com/docs/liveswitch/clients/javascript#WorkingwithDataChannels
https://help.frozenmountain.com/docs/liveswitch/clients/javascript#WorkingwithDataChannels
https://help.frozenmountain.com/docs/liveswitch/clients/javascript#WorkingwithDataChannels
https://www.midi.org/midi-articles/details-about-midi-2-0-midi-ci-profiles-and-property-exchange
https://www.midi.org/midi-articles/details-about-midi-2-0-midi-ci-profiles-and-property-exchange

PAPERS

[64] Steinberg Media Technologies GmbH, “About

MIDI

in VST 3 - VST - Steinberg Developer

A SCALABLE REAL-TIME ONLINE DAW COLLABORATION FRAMEWORK

Help,” https://developer.steinberg.help/display/VST/About

+MIDI+in+VST+3 (accessed Oct. 30, 2020).

THE AUTHORS

Scott Stickland

Scott Stickland is a fourth-year PhD (Music) candidate in
the School of Creative Industries at The University of New-
castle (UoN), Australia. He previously completed a Master
of Music Technology (UoN) and Bachelor of Education
(Sec) — Music (Melbourne) and taught and coordinated
music programs in Australian secondary schools for 16
years. Scott has presented papers at the Australasian Com-
puter Music Conference in 2018 and 2020 and the Web
Audio Conference in 2019 since commencing his PhD. He
currently teaches audio and music production through his
business, Monty Sound Production, and plays keyboards in
the Australian touring band, Cool Change — The Ultimate
Tribute.
[]

Dr. Rukshan Athauda is a Senior Lecturer in the School
of Electrical Engineering and Computing at The Univer-
sity of Newcastle (UoN), Australia. Dr. Athauda’s research
interests span Database Systems, Technology-Enhanced
Learning, Cloud Computing, and IT Security. Dr. Athauda
has published over 60 peer-reviewed research articles in-

Dr. Rukshan Athauda

Nathan Scott

ternationally. He has supervised four PhD completions at
UoN and also undertaken a number of administration roles,
including Head of Discipline and Program Convenor. Prior
to joining UoN, Dr. Athauda worked at Microsoft Cor-
poration, USA; the High-Performance Database Research
Center at Florida International University, USA; and the
Sri Lanka Institute of Information Technology, Sri Lanka.
[]

Nathan Scott is a Lecturer in the School of Creative In-
dustries at the University of Newcastle, Australia. He has
interdisciplinary research interests spanning creative arts,
technology, science, health, and education. Nathan has pre-
sented and performed internationally and published in the
areas of music, technology, education, gaming, and the hu-
man voice. He has presented workshops in regional NSW
(2003) and developed an online international postgraduate
program supporting the use of technology in music con-
texts. He participated in the CHASS Expanding Horizons
forum in Canberra (2006) and undertook a sub-project as
part of an ALTC National Teaching Fellowship (2010).

J. Audio Eng. Soc., Vol. 69, No. 6, 2021 June

431

https://developer.steinberg.help/display/VST/About+MIDI+in+VST+3
https://developer.steinberg.help/display/VST/About+MIDI+in+VST+3

