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A formula is derived for computing the order at which the infinite series representation of the
rigid-sphere head-related transfer function (RS-HRTF) must be truncated to minimize the time
required to compute the HRTF to a sufficiently high accuracy based on binaural perception
metrics. Quick and accurate computation of this HRTF may be useful for implementing spatial
audio in computationally limited and portable devices. Using a brute-force approach, the lowest
truncation order, Nmin, that yields the RS-HRTF that differs from the benchmark (i.e., the RS-
HRTF computed with the highest possible accuracy) by less than just-noticeable difference
thresholds in interaural time and level differences is approximately computed for a wide range
of source distances. By fitting power and rational functions to these computed values, a formula
that approximates Nmin as a function of frequency and source distance is derived. It is shown
that truncation order varies significantly with source distance and that the proposed formula,
unlike a previous one, accurately captures this variation. Consequently, using the proposed
formula instead of the previous one results in a more accurate RS-HRTF that is also computed
48% faster on average.

0 INTRODUCTION

The head-related transfer function (HRTF) is a mathe-
matical or numerical description of the filtering of free-field
acoustic waves exclusively by an individual’s morphology
(primarily the head, pinnae, and torso) before they reach
the individual’s eardrums. It is used, for example, to render
three-dimensional audio (also known as spatial audio) in
virtual reality applications and listening tests for psychoa-
coustic research.

There are numerous ways of acquiring an individual’s
HRTF (for comprehensive summaries, see the work by En-
zner et al. [1] and Xie [2], for example). One approach [3–5]
involves approximating the individual’s head to be a rigid
(i.e., sound-hard) sphere and computing the HRTF numer-
ically by truncating its infinite series representation. Aside
from being easy to compute, this approach is attractive
because the rigid-sphere HRTF (RS-HRTF) is well-suited
to individualization using anthropometric measurements
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[6, 7]. It is a good approximation to human HRTFs for fre-
quencies below approximately 2 kHz [4, 8, 9] and is used
to correct the frequency response of acoustically measured
HRTFs at these frequencies [8, 9], where the signal-to-noise
ratio may be poor.

Another application of the RS-HRTF is to extend
acoustically-measured far-field HRTFs to the near-field [10,
11] as a starting point for developing computationally ef-
ficient models of human HRTFs [12, 13] and to compute
interaural level differences (ILDs) [14–16] and interaural
time differences (ITDs) [17]. For example, in the so-called
“structural HRTF model” proposed by Brown and Duda
[12], ILD is incorporated using a “head-shadow” filter,
which is a first-order, infinite-impulse response (IIR) fil-
ter approximation of the far-field RS-HRTF. Additionally,
ITD is incorporated by combining the ITD computed from
the phase response of this filter with that obtained from
the Woodworth formula [18]. Recent work [13, 19] has
explored strategies for improving the accuracy and effi-
ciency with which the RS-HRTF may be computed, and it
has been demonstrated that a structural HRTF model that
uses an RS-HRTF is not only well-suited for real-time ap-
plications [12] but offers perceptual benefits over generic
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HRTFs when used for binaural rendering of higher-order
ambisonics [20], for example.

From the preceding discussion we see that quick and
accurate computation of the RS-HRTF may be beneficial
for implementing spatial audio in power-limited portable
devices such as electronic travel aids [21], computationally
limited devices such as hearing aids [22], and applications
where, for example, an individualized RS-HRTF needs to be
quickly computed for a wide range of source directions and
distances for real-time dynamic binaural synthesis [20, 23].
Although one approach for improving the speed at which
the RS-HRTF is computed is to use filter approximations as
described earlier, an alternative is to minimize the order, N,
at which the infinite series representation is truncated such
that the resulting RS-HRTF is still sufficiently accurate for
such applications. Since the RS-HRTF is computed directly
from the series representation, this latter approach, unlike
the approximate filter models, for example, enables the RS-
HRTF to be computed exactly for a given N.

0.1 Previous Work
Cooper and Bauck [3] describe a method for comput-

ing the RS-HRTF for sources infinitely far away. In their
method, the infinite series representation is truncated when
the fractional change in the HRTF for two successive terms
first equals or falls below a user-specified threshold, Tc.
That is, the truncation order, N, is iteratively increased until
convergence is achieved. When Tc = 0, the HRTF is com-
puted with the highest possible accuracy (i.e., limited only
by finite-precision rounding errors), with larger values of
Tc producing HRTFs that are less accurate but also reducing
computation time [4]. Cooper and Bauck arbitrarily choose
Tc = 0.001 in their published Fortran program and do not
relate the accuracy of the resulting HRTF relative to those
computed with the highest possible accuracy in terms of
meaningful quantities such as errors in ITDs and ILDs. As
we subsequently show, their program is not optimized to
quickly compute the RS-HRTF to a sufficiently high accu-
racy due to the iterative nature of the computation and the
arbitrary choice of Tc.

Using the infinite series representation provided by Rabi-
nowitz et al. [24] for computing the RS-HRTF for sources
at any finite distance from the head, Duda and Martens
[5] present a comprehensive study of the characteristics
of this HRTF, focusing on its source distance dependence.
However, to compute the HRTF, Duda and Martens use
essentially the same unoptimized method as Cooper and
Bauck, modified to use the series solution by Rabinowitz
et al. [24].

Instead of an iterative approach, Gumerov and Du-
raiswami [25], Jarrett et al. [26], and Schymura et al. [27]
provide formulas for N as a function of angular wavenumber
and sphere radius. These formulas, which typically serve
as rules-of-thumb, eliminate the need for iteration and, as
we show subsequently, result in lower computation times.
However, since they are are all derived for far-field sources,
they closely resemble the well-known rule-of-thumb pro-
posed by Ward and Abhayapala [28] for representing, using

a finite number of spherical harmonics, a sound field gen-
erated within a spherical region of a given radius by an
incident plane wave. As we show subsequently, there is
a significant dependence of N on source distance for near-
field point sources that these existing rules-of-thumb do not
take into account, resulting in an inaccurate RS-HRTF for
most near-field source distances in addition to computation
times that are still longer than necessary.

0.2 Objectives and Approach
From the discussion in Sec. 0.1 we recall that there are

two existing approaches for computing the RS-HRTF from
its series representation: 1) an iterative approach where
accuracy may be specified in terms of a parameter, Tc, and
2) an approach where N is determined a priori using a
formula (typically, a rule-of-thumb) resulting in an HRTF
that has a fixed accuracy. In both cases the accuracy of the
HRTF is not known in terms of perceptually meaningful
quantities such as errors in ITD and ILD.

Our objective here is to derive a formula that approx-
imates the lowest truncation order, Nmin, for any given
frequency and source distance such that ITDs and ILDs
corresponding to the RS-HRTF computed using this for-
mula differ from their respective benchmark values by less
than well-known just-noticeable difference (JND) thresh-
olds. Since the formula approximates the lowest order, the
computation time is close to the minimum required for
computing the RS-HRTF that meets the aforementioned
accuracy criterion.

After reviewing RS-HRTF theory (Sec. 1) and existing
approaches for computing the RS-HRTF (Sec. 2), we first
perform, in Sec. 3.1, a brute-force search for Nmin using a
slightly modified version of the iterative approach devel-
oped by Cooper and Bauck [3]. Once we have approxi-
mately computed Nmin for a wide range of frequencies and
source distances, we fit power and rational functions to the
data to derive a formula for Nmin (Sec. 3.2). Finally, in Sec.
4, we evaluate the proposed formula in terms of compu-
tation time and accuracy of the resulting RS-HRTF and
compare it to the existing rule-of-thumb formula proposed
by Gumerov and Duraiswami [25].

1 THEORY

With the center of the rigid sphere positioned at the ori-
gin, we represent the locations of the left and right “ears”
in a left-handed Cartesian coordinate system using the po-
sition vectors rEL and rER , respectively. Similarly we rep-
resent the direction of a sound source by the position unit
vector, r̂S. Using r̂S and rEX (where X can be L or R), we
may compute the so-called angle of incidence, �X, between
rEX and r̂S as

�X = arctan

(∥∥r̂S × rEX

∥∥
r̂S · rEX

)
, (1)

where ‖ · ‖ denotes the Euclidean norm, × and · denote
cross and dot products, respectively, and arctan is the “four-
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quadrant” inverse tangent.1 The range of �X is [0, 180◦].
When distinguishing between left and right ears is not re-
quired, we use � to represent the angle of incidence.

Let μ denote a non-dimensional frequency such that

μ = 2π f
rRS

c
= krRS, (2)

where f is frequency, c is the speed of sound, k is the an-
gular wavenumber, and rRS is the radius of the sphere.
For a simple-harmonic point source (with flow of the form
Sω eiωt) at a finite distance, rS, from the origin, the RS-
HRTF, H, is given by [5]

H (ρ,μ,�) = − ρ

μ
eiμρ

∞∑
m=0

B∗
m (ρ,μ) Pm (cos �) , (3)

where Pm is the mth-degree Legendre polynomial and ρ =
rS/rRS > 1 is the non-dimensional distance to the source,
and where

Bm (ρ,μ) = (2m + 1)
hm (μρ)

h ′
m (μ)

, (4)

with B∗
m denoting its complex conjugate, hm the mth-order

spherical-Hankel function of the first kind, and h
′
m its first

derivative with respect to the argument. For a source in-
finitely far away, H is given by [3, 5]

H (μ,�) = 1

μ2

∞∑
m=0

A∗
m (μ) Pm (cos �) , (5)

where

Am (μ) = (−i)m−1 (2m + 1)

h ′
m (μ)

. (6)

Note that taking the complex conjugate of Bm and Am in
Eqs. (3) and (5), respectively, amounts to using spherical-
Hankel functions of the second kind (representing waves
propagating outwards from the source for the chosen time
convention) in these equations. We choose to write our
equations in terms of spherical-Hankel functions of the
first kind to maintain consistency with the publication by
Duda and Martens [5], since we refer to it frequently in the
present work.

We also note that Eqs. (3) and (5) are not applicable for
μ = 0 and show (with derivations provided in our paper on
a formula for low-frequency ILD [16]), from Eq. (3), that

lim
μ→0

H (ρ,μ,�) = 2ρ

g (ρ,�)
− ρ ×⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ln

(
g (ρ,�) + 1 − ρ cos �

ρ (1 − cos �)

)
, � �= 0,

ln

(
ρ

ρ − 1

)
, � = 0,

(7)

1This arctan function is commonly represented in many com-
puter programming languages (such as C) and software (like MAT-
LAB) as atan2.

where g (ρ,�) =
√

ρ2 − 2ρ cos � + 1 and ln ( · ) denotes
taking the natural logarithm of the argument. It may be
easily verified from Eq. (5) that

lim
μ→0

H (μ,�) = 1, (8)

which is a well-known result.
Equation (7) may be used for computing the value of H

as μ → 0 exactly for any source location. As described by
Sridhar and Choueiri [16], one of the benefits of having such
a simple equation is to efficiently compute low-frequency
ILD, since the latter is a dominant cue for near-field dis-
tance perception in the free-field [14, 29, 30, 31]. In terms
of filter design for practical audio applications, knowing
the exact value of H as μ → 0 may be less critical. Addi-
tionally, in the case of the RS-HRTF, using the value of H
computed for the smallest non-zero value of μ (depending
on the chosen sampling rate) is often a good approximation
for H as μ → 0. Nevertheless, since Eq. (7) is simple to im-
plement, there is no compelling reason to avoid its use when
computing H.

2 COMPUTATION

For μ = 0, we compute H exactly using the closed-form
expressions shown in Eqs. (7) and (8). However, for μ �=
0, we compute H by truncating the infinite series shown in
Eq. (3) (for finite ρ) and Eq. (5) (for ρ → ∞) to a finite
order, N. Truncation of the series may be achieved by de-
termining N iteratively or using a rule-of-thumb formula.
Before we discuss each approach note that we perform all
computations without parallelization using MATLAB run-
ning on a laptop computer with a 2.3 GHz Intel Core i7
processor. Additionally, all numbers used in the calculation
of H are stored in the double-precision, floating-point for-
mat [32]. The values of the Legendre polynomials and the
spherical-Hankel functions and its derivatives are all com-
puted using the recursion relations shown in APPENDIX A
of the paper by Duda and Martens [5]. Functions that come
pre-packaged with MATLAB (e.g., native implementations
of the aforementioned special functions) are not used to
allow fair and transparent comparisons between the differ-
ent approaches investigated in the present work. For more
details, the interested reader may download and review our
software [33].

2.1 Iterative Approach
In this approach, proposed by Cooper and Bauck [3],

H is computed by increasing N iteratively from 0 until
convergence of the infinite series is achieved. Specifically,
let SA

M (μ,�) given by

SA
M (μ,�) =

M−1∑
m=0

A∗
m (μ) Pm (cos �)

=
M−1∑
m=0

� A
m (μ,�) , μ �= 0,

(9)
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denote the Mth partial sum of the series in Eq. (5), with M
= 1, 2, . . ., �A = A*P, and where we ignore the 1/μ2 term.
Also, let d1(x, y) = |x − y|/|x|, for any two complex numbers
x and y, define a convergence metric. The value of H for
ρ → ∞ and for given values of μ and � is then the value
of SA

M obtained by iteratively increasing M up to the largest
value that satisfies the conditions

d1
(
SA

M+2, SA
M+1

)
> Tc, and d1

(
SA

M+1, SA
M

)
> Tc. (10)

The value of H for finite values of ρ is the value of SB
M

obtained similarly, where

SB
M (ρ,μ,�) =

M−1∑
m=0

B∗
m (ρ,μ) Pm (cos �)

=
M−1∑
m=0

�B
m (ρ,μ,�) , μ �= 0, ρ > 1,

(11)

and �B = B*P.
Duda and Martens [5] use this approach but with a

slightly modified convergence metric, d2, where d2(x, y)
= |x/y|. In this case H is determined as the value of SA/B

M
obtained by iterating over M up to the largest value that
satisfies the conditions

d2

(
�

A/B
M+1, SA/B

M+2

)
> Tc, and d2

(
�

A/B
M , SA/B

M+1

)
> Tc.

(12)

The superscript A/B indicates that the partial sums in ei-
ther Eq. (9) or Eq. (11) may be used, depending on whether
H is computed for ρ → ∞ or finite ρ, respectively. Note that
in Eqs. (10) and (12) the metrics d1 and d2, respectively, are
evaluated for two successive iterations to check for conver-
gence of the series in Eqs. (9) and (11), respectively. This
is because convergence is non-monotonic due, in part, to
the oscillatory nature of the Legendre polynomials as order
increases for a given value (except 1) of the argument.

Although the inequalities in Eqs. (10) and (12) are math-
ematically identical, we find that they are not equivalent
from a numerical computation perspective due to rounding
errors that are intrinsic to finite-precision calculations. For
instance we find that using Eq. (12) instead of Eq. (10) with
Tc = 0 results in up to 291 additional terms being used to
compute H to the same accuracy for 36 uniformly spaced
sources on the horizontal plane (i.e., the plane consisting
of sources with zero elevation) and for μ ranging from 0 to
approximately 40.

To explain this discrepancy we note that although the
additional terms are not all zero each term of the series in
Eq. (3) or Eq. (5) when added to the preceding one does
not change the sum. Since the computation of H necessarily
involves such rounding errors due to the summing of terms
in these series solutions, it is better to use d1 instead of d2 in
practice, especially when computing the RS-HRTF to the
highest possible accuracy. It is worth noting however that
this discrepancy exists only when Tc is less than the machine
epsilon and increases in magnitude with decreasing Tc.

As specified in Sec. 0.1, the RS-HRTF computed using
Tc = 0 has the highest possible accuracy and as such may be
considered a benchmark. We hereafter refer to this HRTF

as the benchmark RS-HRTF and quantities such as ITD
and ILD that are computed from it as benchmark ITDs and
ILDs, respectively.

2.2 Rule-of-Thumb Approach
In contrast to the iterative approach, H is computed by

truncating the infinite series to order N, which is computed
a priori, typically using a rule-of-thumb formula [25–27].
Gumerov and Duraiswami propose the formula [25]

N = [ekrRS] = [eμ] , (13)

where e is the base of the natural logarithm and [ · ] repre-
sents rounding to the nearest integer. Similarly, Abhayapala
et al. propose [34]

N =
⌈π

2
eμ

⌉
, (14)

for truncating the series expansion of a plane wave into
spherical harmonics, which is then used by Schymura et al.
[27] to truncate the series representation of the RS-HRTF.

Jarrett et al. instead propose [26]

N = 	1.1kmaxrRS
 = 	1.1μmax
 , (15)

where kmax is the largest wavenumber of interest (corre-
sponding to μmax, the largest non-dimensional frequency
of interest) and 	 · 
 represents rounding to the next largest
integer.

In Eqs. (13) and (14) we see that N is computed as a
function of μ, whereas in Eq. (15), N is computed inde-
pendent of μ. We find that, when computing H for a wide
range of frequencies, computing N independent of μ is not
computationally efficient because the summations in Eqs.
(3) and (5) converge rapidly with decreasing μ such that
the value of N corresponding to μmax is often much larger
than necessary for smaller values of μ. For simplicity we
shall only use Eq. (13) for the rule-of-thumb approach in
the rest of this paper.

2.3 Comparison of the Two Approaches
In the iterative approach computation time and accuracy

of H depend on the user-defined threshold, Tc, which must
be real and non-negative, with values closer to 0 corre-
sponding to higher accuracy and longer computation times
in general. In the rule-of-thumb approach the accuracy of H
cannot typically be varied unless the formula for comput-
ing N includes a parameter for doing so, which the existing
ones do not have.

To compare computation times for the two approaches,
we first time (as described in APPENDIX A.1) the iterative
approach for 5 uniformly spaced values of Tc ranging from
10−2 to 10−10. In doing so we implicitly compute, for each
Tc, truncation order, N, as a function of ρ, �, and μ. As a first
comparison we use these values of N (instead of Eq. (13),
for example) to time the rule-of-thumb approach.2 Denoting
the computation times for the iterative and rule-of-thumb

2Technically this would not qualify as a “rule-of-thumb” ap-
proach as N is not determined using a rule-of-thumb, but we shall
ignore this distinction as one having to do with semantics.
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approaches as τI and τRT , respectively, we then compute
the relative speed increase (RSI) of the latter approach over
the former as

RSI = τI − τRT

τRT
× 100%, (16)

where RSI is a function of ρ, �, μ, and, in this case, Tc.
By averaging the RSI over all four parameters, we find

that the rule-of-thumb approach is, on average, 43% faster
than the iterative one. Based on our implementation of the
two approaches, this increase in speed is only because the
convergence criteria defined in Eq. (10) need not be evalu-
ated at each iteration. Additionally we find that this average
RSI is within approximately 10% of most RSI values com-
puted for the different values of ρ, �, μ, and Tc, indicating
that the RSI does not change significantly with these pa-
rameters (even though the wall-clock times for the various
calculations can vary substantially). The largest differences
exist between computations for finite values of ρ and those
for ρ → ∞, which is likely due to the different sets of equa-
tions (e.g., Eq. (3) versus Eq. (5)) used in their computation.
Similar differences also exist for some of the smaller values
of μ and Tc, especially when ρ → ∞.

We also perform an alternative comparison where we
compute the RSI of the rule-of-thumb approach with N de-
termined using Eq. (13), over the iterative approach with Tc

= 10−6 and ρ → ∞, since Gumerov and Duraiswami [25]
observe that “excellent agreement” is achieved between the
two approaches for these values. In this case we find that
the rule-of-thumb approach is, on average, 41% faster than
the iterative one. The similarity between the two RSI values
computed above indicates that values of N computed using
Eq. (13) are likely very similar to those obtained implic-
itly when using the iterative approach with Tc = 10−6 and
ρ → ∞, which is in agreement with the aforementioned
observation by Gumerov and Duraiswami.

Although each approach could potentially benefit from
additional optimization, such as memoization3 and vector-
ization, it is clear that using the rule-of-thumb approach to
compute H to a desired accuracy has an intrinsic benefit
over the iterative one, provided the appropriate N can be
specified a priori.

We can show that N varies with both μ and ρ by plotting,
in Fig. 1, N versus μ for a few different values of ρ. The
variation of N with μ and ρ shown in the figure is valid for
any � since we find that N does not vary significantly with
�. The solid curves correspond to N computed using the
iterative approach whereas the dashed curve shows N com-
puted using Eq. (13). In general N increases with increasing
μ and decreasing ρ. However for ρ = 1.5, 2, and 3, we see
that N is unchanged below μ ≈ 1.3, 3, and 5, respectively,
even though we expect N to decrease with decreasing μ.
This is a consequence of Tc being specified independently
of μ, which, as we later demonstrate (see Sec. 3.1.2), may
be accounted for by specifying accuracy using a different

3Memoization is an optimization technique where results of ex-
pensive function calls are stored in a cache and returned whenever
the function is called with the same inputs [35].

Fig. 1. Solid curves: N versus μ for ρ = 1.5, 2, 3 and ρ → ∞,
Tc = 10−6, and � = 170◦. Dashed curve: N computed using Eq.
(13). The top axis shows frequency, f, in kHz computed for rRS =
0.09 m.

parameter, resulting in the expected variation of N with μ,
even for small values of ρ.

Comparing the dashed curve to the solid one correspond-
ing to ρ → ∞, we find that Eq. (13) is fairly accurate in the
neighborhood of μ = 7 but underestimates N for μ � 7 and
overestimates it for μ > 7. However a more critical issue is
that Eq. (13) does not account for the variation of N with ρ,
which, as we later demonstrate, has consequences related
to the computation time and accuracy of the RS-HRTF.

3 OPTIMIZATION

Although the RS-HRTF is computed more quickly using
the rule-of-thumb approach rather than the iterative one,
existing formulas for computing N a priori suffer from
two drawbacks: 1) they do not take into account the vari-
ation of N with ρ, and 2) they may be used to compute
the RS-HRTF only to a fixed accuracy that may be higher
than necessary for most practical applications, resulting in
an unnecessarily long computation time. For applications
where computational resources are limited, it may be de-
sirable to compute the RS-HRTF to the lowest acceptable
accuracy from a perceptual standpoint.

Setting a perceptually motivated accuracy threshold is
not trivial because there are many perceptual attributes to
consider (for example, Simon et al. [36] list eight such at-
tributes in addition to localization). Even when considering
localization alone, spectral cues generated by the pinnae
and reflections off the torso, both of which are absent when
considering the RS-HRTF only, play important roles in el-
evation localization and resolving front-back and up-down
confusions. However given that ITDs and ILDs are impor-
tant for localization of lateral sources and in the perception
of near-field source distance [37, 38] and that the RS-HRTF
is often used to incorporate them in binaural synthesis ap-
plications (recall the discussion in Sec. 0), we compute the
RS-HRTF that is just accurate enough to ensure that ITD
and ILD errors relative to their benchmark values are within
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Fig. 2. N versus Tc for μ = 0.1, 5, 10, 20, and 30 rad, ρ → ∞, and
� = 170◦. The values in parentheses are frequencies, f, in kHz
computed for rRS = 0.09 m.

well-known JND thresholds. Here we derive a formula for
N as a function of μ and ρ that minimizes the time required
to compute such an RS-HRTF.

To derive the formula we first use a slightly modified
version of the iterative approach described in Sec. 2.1 to
compute, for a wide range of values for ρ, the RS-HRTF that
has approximately the lowest required orders, Nmin, while
also satisfying the aforementioned accuracy criteria. We
then fit power and rational functions to the approximately
determined Nmin to obtain a formula for Nmin as a function
of μ and ρ.

3.1 Computation of the Lowest-Order RS-HRTF
It is well known that humans are capable of resolving

changes in ITD as low as 10 μs for sources close to the
median plane [39] and changes in ILD as low as 1 dB for a
wide range of baseline ILDs [40] and for frequencies up to
approximately 5 kHz [41]. One way to determine Nmin is by
iteratively increasing the value of Tc from Tc = 0 until the
largest value is found that results in an RS-HRTF with ITDs
and ILDs that differ from their corresponding benchmark
values by less than these JND thresholds. However, as we
shall now demonstrate, the iterative approach is not suitable
for doing so.

3.1.1 Unsuitability of the Iterative Approach
In the iterative approach Tc is only restricted to be real

and non-negative. Consequently, unless Tc is changed by
an unknown, large enough amount that is a function of μ,
ρ, and �, the infinite series is truncated to the same order,
N. This makes it difficult to iterate over Tc.

Fig. 2 shows a plot of N versus Tc for a few different
values of μ and ρ → ∞. Although N increases with de-
creasing Tc in general, we see that there is a one-to-many
relationship between Tc and N, and Tc cannot be reliably
changed to guarantee a change in N. For example, for μ =
5, we see that N = 12 for a wide range of Tc but N = 13 for a
much smaller range. We also see that changing the value of
Tc may result in a change in the value of N for some values
of μ but not for others unless Tc is varied by a large enough

Fig. 3. N versus p for μ = 0.1, 5, 10, 20, and 30 rad, ρ → ∞, and
� = 170◦. The values in parentheses are frequencies, f, in kHz
computed for rRS = 0.09 m.

amount. Although not shown we find a similar behavior for
finite values of ρ.

3.1.2 Modified Iterative Approach
Instead of choosing an arbitrary iteration step size for

Tc we modify the iterative approach described in Sec. 2.1
to make it more suitable for determining Nmin iteratively.
Specifically, instead of the convergence metrics defined in
Sec. 2.1, we define the metric, d3(x, y) = (x − y)p, where
(·)p denotes rounding to p decimal digits such that

(z)p := [Re (z) · 10p] + i [Im (z) · 10p]

10p
, z ∈ C, (17)

for a given, non-negative integer, p, and where we define
(z)∞ = z. We refer to the quantity, p, as numerical precision
and determine H as the value of SA/B

M obtained by iterating
over M up to the largest value that satisfies the conditions

d3

(
SA/B

M+Mc
, SA/B

M+Mc−1

)
�= 0, Mc = 1, . . . , 4. (18)

Unlike Eqs. (10) and (12), where only two conditions
need to be satisfied, we require that four conditions be
satisfied because we find that for a few values of μ, ρ,
and �, checking two conditions is not sufficient to ensure
convergence.

Fig. 3 shows a plot of N versus p for the same values of
μ shown in Fig. 2. We see that there is generally a one-to-
one relationship between p and N for values of p up to a
μ-dependent upper limit that also depends on the computer
number format. We use the double-precision floating-point
format [32], where p > 15 and p → ∞ may be considered
equivalent. An approximate relationship between p and Tc

is Tc ≈ 10−p with p → ∞ corresponding exactly to Tc = 0.

3.1.3 Determination of Nmin

Since p is integer valued, we may determine Nmin by it-
eratively decreasing p in steps of 1 from p = 15 until the
smallest value is found that results in an RS-HRTF that sat-
isfies the aforementioned accuracy criteria based on ITD
and ILD errors relative to their respective benchmarks. In
particular we first compute 10 ms-long rigid-sphere head-
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Fig. 4. Absolute error in (a) ITD and (b) ILD, each as a function of p. The circles correspond to the mean while the top of the error bars
correspond to the maximum absolute error.

related impulse responses (RS-HRIRs) at a sampling rate
of 48 kHz for a sphere with antipodal “ears,” 20 logarith-
mically spaced values of ρ ranging from 1.5 to 20, and
61 uniformly spaced source directions within 30◦ on either
side of the median plane. From each of these HRIRs we
compute ITDs as interaural-phase delays (IPDs) for 0 ≤ μ

< 2. We also compute ILDs as the absolute differences be-
tween left and right ear magnitude spectra, in dB, for 0 ≤ μ

< 8 for similar RS-HRIRs corresponding to 61 uniformly
spaced source directions within 90◦ on either side of the
median plane.

Fig. 4 shows the mean and maximum absolute errors
in ITD (Fig. 4(a)) and ILD (Fig. 4(b)) as a function of
p. The means and maxima are taken over all values of
μ, ρ, and � for which these quantities are computed.
The hatched regions correspond to the values of ITD and
ILD that are above their respective JND thresholds (shown
by dashed lines). From Fig. 4(a) we see that for p < 3,
the absolute ITD errors are well above the threshold of
10 μs. When p = 3 the errors are in the neighborhood of
the threshold value, while for p > 3 the errors are be-
low. From Fig. 4(b) we see that for p = 1, the absolute
ILD errors are well above the threshold of 1 dB. When
p = 2 the errors are in the neighborhood of the threshold
value, while for p ≥ 3 the errors are below.

From these two figures and the preceding discussion we
conclude that when p ≥ 4 is used to compute the RS-
HRTF, values of ITD and ILD computed from the HRTF
differ from their corresponding benchmarks by less than
their respective JND thresholds. To minimize computation
time we choose p = pmin = 4. The desired values of Nmin

approximately correspond to the orders of the RS-HRTF
computed using p = pmin.

3.2 Derivation of Formula
By analyzing the relationships between Nmin and the vari-

ables μ, ρ, and � we find that Nmin varies significantly with
μ and ρ but not with �. Based on values of Nmin computed
as described in Sec. 3.1 for p = pmin, 201 linearly spaced
values of μ between 0 and ∼33, 10 logarithmically spaced

values of ρ between 2 and 10, and averaged over 19 uni-
formly spaced values of � between 0 and 90◦, we find,
using a heuristic approach, that Nmin varies with μ and ρ

according to the relationship

Nmin ≈ [
α + βμγ

]
, μ > 0, (19)

where α, β, and γ are given by

α = 1.41ρ + 3.9

ρ − 1.36
,

β = 2.73ρ − 4.75

ρ − 1.21
,

γ = 0.8ρ − 1.01

ρ − 1.45
. (20)

As ρ → ∞ we have α = 1.41, β = 2.73, and γ = 0.8.
Equation (20) is applicable for ρ ≥ 2. For 1 < ρ < 2
the value of Nmin computed for ρ = 2 may be used. For
μ = 0 we may compute the RS-HRTF exactly using Eq.
(7) (for finite ρ) or Eq. (8) (for ρ → ∞). The numerical
values in each of the rational functions shown in Eq. (20)
are computed by generating nonlinear least squares fits to
the data using a trust-region algorithm [42]. A summary
of the steps involved in computing these values is given in
APPENDIX B.1.

Fig. 5 shows the variation of Nmin with μ and ρ for �

= 60◦. The values of Nmin corresponding to individual data
points are computed iteratively using p = pmin as described
in Sec. 3.1, whereas those corresponding to the solid lines
are computed using Eq. (19). From this figure we see that
Nmin increases with μ as expected and decreases with in-
creasing ρ, with the latter trend being more prominent for
smaller values of μ. We also see that there is a good fit
between Nmin computed using Eq. (19) and those computed
iteratively. Similar behavior is observed for other values of
�, although the fit is slightly better for some values of �

than others.
Comparing Fig. 5 to Fig. 1 and referring back to the

discussion in Sec. 2.3, we see that, unlike the variation of
N with μ shown in Fig. 1, Nmin decreases with decreasing
μ even for values of ρ as low as ρ = 2. This suggests that
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Fig. 5. Nmin versus μ for � = 60◦. The Nmin values corresponding
to individual data points are computed iteratively whereas those
corresponding to the solid lines are computed using Eq. (19). The
top axis shows frequency, f, in kHz for rRS = 0.09 m.

p is more suitable than Tc for specifying accuracy when
computing the RS-HRTF iteratively.

4 EVALUATION

To evaluate the accuracy of the proposed formula we
compute absolute errors in ITD and ILD estimated from
an RS-HRTF computed using the formula (i.e., Eq. (19))
relative to their respective benchmarks. We also compare
the formula to the rule-of-thumb (see Eq. (13)) by Gumerov
and Duraiswami [25], both in terms of accuracy using the
aforementioned error calculations and computation time.

Fig. 6 shows the mean and maximum absolute errors in
ITD (Fig. 6(a)) and ILD (Fig. 6(b)) as a function of ρ, where
ITD and ILD are computed as described in Sec. 3.1. The
means and maxima are taken over all values of μ and �

for which these quantities are computed (see Sec. 3.1). The
dashed lines in the figures correspond to JND thresholds.

From Fig. 6(a) we see that the mean and maximum ab-
solute ITD errors for the proposed formula are consistently
lower than those for the rule-of-thumb. We also see that the
errors for the rule-of-thumb are above the JND threshold
of 10 μs for all values of ρ, whereas those for the proposed
formula are all below this threshold.

From Fig. 6(b) we see that the mean and maximum ab-
solute ILD errors for the proposed formula are well be-
low the JND threshold of 1 dB, whereas the maximum
errors for the rule-of-thumb are above this threshold for
most values of ρ, especially in the near-field (i.e., for ρ

≤ 10, approximately). For ρ → ∞ the absolute ILD er-
rors for both formulas are comparable. Interestingly we see
from Fig. 6(a) that even for ρ → ∞, the absolute ITD
error for the rule-of-thumb is above the JND threshold.
Since ITD is computed for μ < 2 only, this indicates that
the rule-of-thumb is inaccurate for small μ even for ρ →
∞, where N is underestimated by no more than 5 (see
Fig. 1).

To evaluate the computational efficiency of the two for-
mulas we first measure their computation times as described
in APPENDIX A.1. We then use the RSI calculation described
in Sec. 2.3 (see Eq. (16)) to compare the computation times
with each other and with that obtained when using the it-
erative approach described in Sec. 3.1 with p = pmin. We
find that the average RSI when using the proposed formula
instead of the rule-of-thumb is 48% and that this value in-
creases to 165% when comparing the proposed formula to
the iterative approach.

From these results we see that the proposed formula for
Nmin as a function of μ and ρ may be used to compute
an RS-HRTF that is sufficiently accurate for most practical
applications while also providing significant computational
savings over existing methods for computing this HRTF.

5 SUMMARY AND CONCLUSIONS

We derived, in Sec. 3.2, a formula (see Eq. (19)) that
approximates the truncation order, Nmin, that minimizes

Fig. 6. Absolute error in (a) ITD and (b) ILD, each as a function of ρ. The open circles and squares correspond to the mean while the
tops of the error bars correspond to the maximum absolute errors.
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the time required to compute the RS-HRTF such that corre-
sponding ITDs and ILDs differ from their respective bench-
marks by less than their respective JND thresholds. To eval-
uate the proposed formula we used it to compute the RS-
HRTF for many source distances and directions (see Sec.
4) and showed that mean and maximum absolute ITD and
ILD errors relative to their respective benchmarks (defined
in Sec. 2.1) remain below JND thresholds. We also showed
that the computation is, on average, 48% faster compared
to using an existing rule-of-thumb formula (see Eq. (13)).
Furthermore we showed that errors in ITD and ILD fre-
quently exceed corresponding JND thresholds when using
the rule-of-thumb formula partly because, unlike the pro-
posed formula, it does not account for the dependence of
truncation order on source distance.

Many spatial audio applications use the RS-HRTF with
the intention of quickly obtaining accurate ITDs and ILDs
without significant computational effort. For example the
RS-HRTF has been used to extend acoustically measured
far-field HRTFs to the near-field [10, 11], where ensuring
that low-frequency ILD is correctly computed is critical
due to the importance of this cue for near-field distance
perception [14]. Since the proposed formula may be used to
quickly compute an RS-HRTF that is sufficiently accurate
in terms of ITD and ILD, it may be used to implement
distance-dependent localization algorithms in devices such
as hearing aids where computational resources are limited.
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A.1 MEASURING COMPUTATION TIME

To measure the computation time of a given method, we
use the method to compute H for ρ = 2, 3, 5 and ρ →
∞, five uniformly spaced values of � between 0 and 180◦,
and 40 uniformly spaced values of μ between 0.82 and
32.97 (corresponding to frequencies of 500 Hz and 20 kHz,
respectively, for rRS = 0.09 m). The wall-clock time for
each calculation (i.e., for a given selection of ρ, �, and μ)
is determined using MATLAB’s tic and toc functions by
averaging over 1,000 repetitions of each calculation. This
results in a 4 × 5 × 40 array of computation times for a
given method. Note that before we time each calculation we
perform a few untimed calculations to prevent any first-time
computation costs from biasing the result.

B.1 COMPUTATION OF COEFFICIENTS IN EQ.
(20)

To compute the coefficients in Eq. (20) we begin by using
a trust-region algorithm (see MATLAB Curve Fitting Tool-

box [42]) to determine the values of α, β, and γ as functions
of ρ from the values of Nmin computed as described in Sec.
3.1 with p = pmin. The computed values of α, β, and γ are
given in Table 1.

Table 1. Values of α, β, and γ (the coefficients in Eq. (19))
computed for 10 logarithmically spaced values of ρ.

ρ α β γ

2 10.3555 0.9367 1.0695
2.3916 7.2092 1.4175 0.9705
2.8599 5.2887 1.8173 0.9098
3.4200 4.2109 2.0757 0.8765
4.0896 3.3774 2.3068 0.8497
4.8904 2.7869 2.4486 0.8347
5.8480 2.6488 2.4593 0.8331
6.9932 2.5140 2.4658 0.8320
8.3625 2.2972 2.5027 0.8277
10 2.2837 2.4533 0.8325

We find that the generated fit produces a coefficient of
determination, R2, of 0.9989 and a root-mean-square error
(RMSE) of 0.41 when averaging over ρ.

Having computed α, β, and γ for 10 unique values of ρ,
we then fit first-order rational functions as shown in Eq.
(20) to compute these parameters directly for any given
ρ. We determine the coefficients of the rational functions
similarly and find that the fits produce R2 values of 0.997,
0.983, and 0.991 and RMSE values of 0.165, 0.08, and
0.008 for α, β, and γ, respectively.
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