
ENGINEERING REPORTS
B. Matuszewski, “A Web-Based Framework for

Distributed Music System Research and Creation”
J. Audio Eng. Soc., vol. 68, no. 10, pp. 717–726, (2020 October.).

DOI: https://doi.org/10.17743/jaes.2020.0015

A Web-Based Framework for Distributed Music
System Research and Creation

BENJAMIN MATUSZEWSKI
(benjamin.matuszewski@ircam.fr)

CICM/musidance EA1572, Université Paris 8, STMS Ircam-CNRS-Sorbonne Université Paris, France

This paper presents soundworks, a framework dedicated to prototyping and developing
distributed multimedia applications using Web technologies. Since its first release in 2015,
the framework has been used in numerous artistic and research projects such as concerts,
installations, workshops, teaching, and experimental setups. We first present how this diversity
of contexts and objectives permitted us to identify a set of patterns able to support recurring
needs of expert users in exploratory tasks. We then detail new developments that have been
achieved to provide better support to these patterns. More particularly, we describe the novel
distributed state management system dedicated to simplifying the implementation of remote
control and monitoring interfaces and the plug-in system implemented to improve the exten-
sibility of the framework and foster composition of dedicated functionalities. We believe that
these new developments can provide a solid ground for further research and artistic practices
in the area of distributed music systems. The soundworks framework is open source and
released under BSD-3-Clause license.

0 INTRODUCTION

The specification and development of the WebAudio Ap-
plication Programming Interface (API) [1, 2]—alongside
APIs such as WebSockets [3] or WebGL [4] and the pos-
sibilities offered by a full-featured scripting language such
as [5]—has permitted to envision the Web platform [6] as a
viable technical platform for artistic creation and more pre-
cisely for computer music practices [7]. Furthermore, the
recent developments of ubiquitous and pervasive comput-
ing [8], with the democratization of smartphones and large
spread of nanocomputers, led us to consider Web technolo-
gies as a possible solution for recurring integration and in-
teroperability issues [9]. These two complementary aspects
therefore authorize us to consider the Web as an interest-
ing environment in the development of Networked Music
Systems [10–12]. Moreover, this novel approach could un-
fold novel possibilities in related areas such as multisource
electro-acoustic music [13, 14] or interfaces for musical
expression [15, 16]. In this context, the development of a
dedicated framework, designed to support both the speci-
ficities of the web platform and of computer music research
and practices seems essential.

Indeed, computer music is a field that spans across mul-
tiple disciplines—from scientific to artistic through social
sciences and humanities—and thus gathers a great diver-
sity of goals, skills, and methodologies (e.g., experimental

studies, practices-based research). It appears that a com-
mon ground for the support of this diversity can be found
in the concept of experimental systems—as systems com-
posed of epistemic things and technical objects in constant
evolution and reconfiguration—developed by Rheinberger
[17, 18] and pursued by Schwab in the context of artistic re-
search [19]. We postulate that such epistemological ground
can lead to the implementation of particular patterns [20]
in order to support this diversity of research practices ef-
fectively.

soundworks [21]—initiated by S. Robaszkiewicz and
N. Schnell [22] in 2015—is a framework dedicated to the
development of distributed multimedia applications on the
web. It has known two major revisions (in 2016 and 2017)
and has been used in numerous artistic and research projects
(e.g., concerts, installations, workshops, pedagogical or
experimental setups) [23–25]. While these achievements
tended to validate the efficacy of the framework considered
as an experimental platform, they also permitted to high-
light some inherent and recurring difficulties. The third ver-
sion of soundworks—initiated in 2019 [26]—presented
in this paper aims to address some of these difficulties, as
well as to provide solid foundations upon which environ-
ments facilitating the inclusion and agency of nonexpert
developers users can be built.

After a short review of the related works (cf. Sec. 1), we
describe in Sec. 2 different contexts in which our framework

J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October 717



MATUSZEWSKI ENGINEERING REPORTS

has been successfully used in the last two years and which
informs us about recurring and important needs our frame-
work must support. In Sec. 3, we present an overview of
the framework architecture, philosophy, and basic func-
tionalities. Finally, in Secs. 4 and 5, we detail new features
dedicated to supporting patterns—namely remote monitor-
ing and control, composability, and extensibility—that we
consider of primary importance to provide an effective ex-
perimental platform supporting distributed music systems
research and creation.

1 RELATED WORKS

Max/MSP or Pure Data [27, 28] are well-established en-
vironments used for many years by artists and researchers
in a wide range of contexts. The success of these visual
programming environments lies in part in their successful
implementation of certain patterns that permitted users to
create and compose their own application in a very inter-
active fashion [25]. However, the environments also come
with their drawbacks in our context. First, they are not
primarily oriented toward distributed applications and are
difficult to operate in large and dynamic networks of com-
puters. Second, they necessitate the installation of software,
making applications difficult to distribute and thus to de-
ploy in large collective settings, precluding new forms of
public and collective participation.

On the Web platform, attempts have been made to im-
plement equivalent environments [29]. However, while in-
teresting, these tools are far for from being as mature as the
original ones. Also, they tend to neglect one of the most
interesting aspects of using the Web platform (namely, the
network). Finally, some frameworks dedicated to network
music systems, such as Rhizome [30] or Nexus [31], have
been proposed. While similar to soundworks in their
scope, these tools do not seem to be maintained or in active
development.

2 CONTEXTS

In this section, we review different contexts in which
we deployed web-based distributed systems implemented
using our framework. Each of these contexts will be illus-
trated with a particular project that has been developed in
the last years. Note that while these 3 applications have
been designed and developed with the previous version of
soundworks, two of them (i.e., Playground and CoMo)
have already been ported to the novel version. These rewrit-
ings permitted the simplification of the code base and,
moreover, enabled new artistic and research possibilities,
assessing thus the concepts and design decisions presented
in this paper.

2.1 Concerts and Performances
Playground is an application that allows a com-

poser/performer to remotely distribute and control audio
materials rendered on the smartphones of the audience.

The application exposes several dynamic control inter-
faces, optimized for touch interfaces such as tablets (see
Fig. 1), that can be jointly used:

—The first one allows for triggering sound files on a
given smartphone, represented on the screen as a col-
ored square.

—The second one allows for controlling granular syn-
thesis among subsets of the audience’s smartphones.

—The third one is dedicated to controlling the spatial
rendering of audio files synchronized among all smart-
phones.

—Finally, the fourth one is dedicated to managing all pre-
sets and configuration variables as well as to assigning
particular sound banks to the other control interfaces.

In this application, a number of strategies are imple-
mented to provide the composer and performer a dynamic
environment in which they can test sonic material and con-
figure many aspects of the synthesis (e.g., dynamic up-
date of sound files, creation of presets) in the studio but
also have useful feedback on the state of audiences’ smart-
phones (e.g., loading states, position in concert hall) during
the performance.

Playground has been designed together with the com-
poser Garth Paine and implemented for the creation of Fu-
ture Perfect, an immersive 3D audio visual performance1.
Since then, the application has been used for the cre-
ation of several pieces—by the composer himself or other
composers—as well as in workshops and pedagogical situ-
ations.

2.2 Installations
The context of an installation comes with different con-

straints and requirements than the ones of performances.
In such contexts, the usage of so-called nanocomputers is
interesting for several reasons [25], the most important one
being the simplicity they offer in term of orchestration and
task automation compared to smartphones.

For example, Biotope [32], composed by Jean-Luc
Hervé2, is a generative and interactive installation that
features 27 Raspberry Pi nanocomputers running Node.js
soundworks clients. The audio synthesis is achieved us-
ing a Node.js wrapper on top of the libpd library [33, 34].

In this system, a number of strategies have been imple-
mented to provide a dynamic and testable environment to
the composer and to the computer music designer. Among
them, we have implemented a centralized controller dedi-
cated to controlling and monitoring the state and parameters
of each agent in real time. For example, each square in the
right half of Fig. 2 represents a musical agent in its relative

1 Future Perfect has been composed and realized during a re-
search/creation residency that took place in 2018 between IRCAM
and ZKM.

2 Biotope has been realized at IRCAM and created at the Centre
Georges Pompidou, Paris, in the context of the exhibition “La
fabrique du vivant.”

718 J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October



ENGINEERING REPORTS SOUNDWORKS

Fig. 1. On the left, Garth Paine performing Future Perfect. On the right, screenshots of two of the four control interfaces of the
Playground application.

position in the exhibition space, the different colors giving
an overview of their state in real time.

2.3 Scientific Settings and Measurements
A third important context of computer music research

relates to scientific experimental research. In this context,
some the characteristics of our framework, such as clock
synchronization [35], enabled novel possibilities in scien-
tific experimentations.

For example, the project EmoDemos [36] included an
experiment dedicated to measuring precision and synchro-
nization of the movement in groups of children practicing
music (see Fig. 2, right). This experimental setup has been
developed on top of CoMo—an application dedicated to
creating movement-based distributed Interactive Machine
Learning scenarios—[16], and allowed to record the motion
sensors of smartphones tagged with synchronized times-
tamps. The portability and simplicity of deployment of the

system permitted us to measure almost 200 children, di-
vided into groups of 10 to 15.

Once again, the system exposes a dedicated client to con-
trol and monitor the state of the application, allowing the
experimenters to prototype and refine the protocol as well
as to ensure smooth measurements in a very constrained
timeline and environment. CoMo has also been used in dif-
ferent settings such as music, design and dance researches,
artworks [37], and workshops.

2.4 Common Requirements and Patterns
These different examples show the large diversity of con-

texts a framework dedicated to computer music research
and creation must support. Furthermore, they all implied
intertwined periods of research, development, composition,
and tests in the laboratory or the studio (possibly with mu-
sicians and performers) that deepen further the diversity of
spaces and temporalities involved.

Fig. 2. On the left, a screenshot of the centralized controller developed for the installation Biotope composed by Jean-Luc Hervé. On
the right, a session of measurement during the EmoDemos research project.

J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October 719



MATUSZEWSKI ENGINEERING REPORTS

To adapt to these different contexts and their inherent
constraints, the technological system must thus be easily
developed, modified, or extended. This leads us to consider
that two design aspects are of primary importance in the
development of our framework.

First, the importance for remote monitoring and con-
trol that allows a single user in working situation (e.g.,
composer, researcher) to operate the distributed system—
possibly composed of hundreds of devices—as a “single
coherent system” [38]. We will describe in Sec. 5 how our
framework proposes to support and facilitate the implemen-
tation of such functionality.

Second, the importance of being able to easily reuse ex-
isting functionalities but also to extend the framework with
novel and dedicated components, to support exploratory
workflows. Such problems can be addressed by introduc-
ing and supporting composability and extensibility in the
system. We will describe in Sec. 5 how we propose to pro-
mote such aspects in soundworks.

3 ARCHITECTURE OVERVIEW

In this section, we present some high-level and general
aspects of the soundworks framework. We present first
the general architecture and scope of the framework and
second a formalization of its most basic functionalities.

3.1 General Principles
Since its inception, soundworks has been dedicated

to simplifying the development of web-based and dis-
tributed real-time musical systems. Applications created
using soundworks follow a star network topology cen-
tered around a server written using Node.js (see Fig. 3). In
these applications, clients can have multiple responsibili-
ties (e.g., audio rendering, visual rendering, control) and be
of different kinds (e.g., mobile, desktop, nanocomputers).

In previous versions, the framework was mainly focused
on mobile applications and therefore privileged certain
characteristics of these platforms (e.g., graphical user inter-
face, usability). However, to support more diverse applica-
tions and use-cases, it must evolve toward more modularity
and extensibility considering both software (e.g., integra-
tion of third party components and libraries) and hardware
(e.g., integration of Internet of Things [IoT] elements). In
this objective, the scope of the framework has been refined
and narrowed down to focus only on four key aspects: ini-
tialization, communications, distributed state management,
and plug-in host for external and dedicated functionalities.
As a consequence, a number of functionalities (e.g., tem-
plating, graphical and audio rendering) have been removed
from the core of the framework and delegated to external
and specialized libraries. These developments also permit-
ted us to reduce the API surface area of the framework, the
number of dependencies, and, finally, improved its main-
tainability and learnability.

3.2 Initialization and Communications
The most basic functionality exposed by the framework

is to easily bootstrap an application by taking care of initial-
izing processes and communications. Fig. 4 summarizes the
initialization process common to all soundworks clients:

—The init step consists in connecting two WebSock-
ets to the server, one dedicated to JavaScript Object
Notation (JSON)-compliant string data and a second
to binary data. The API of both sockets is similar and
exposes a simple publish/subscribe interface.

—Once sockets are connected, the plug-ins initialization
can start. To support dependencies between plug-ins,
soundworks can create a dependency graph start
each plug-in accordingly.

—Finally, when all plug-ins are in a ready state, the
application specific code (called Experience in
soundworks terminology) can start.

Fig. 4 also illustrates a novel feature of the framework
that enables the seamless implementation of soundworks
clients in the two main environments: browsers and Node.js.
Indeed, while this approach has already been tested and
deployed in a production setting (cf. Sec. 3.2), the novel
version the framework properly integrates it by making
most of the code compatible to both platforms. This novel
feature should foster IoT approaches [39, 25] by simplifying
the creation of applications composed of diverse type of
clients (e.g., smartphones, nanocomputers).

4 DISTRIBUTED STATE MANAGEMENT

An important novel feature of soundworks is the in-
tegration of a distributed state management system. This
component is dedicated to supporting and simplifying the
implementation of remote control and monitoring function-
alities.

Since the introduction of the Flux pattern proposed by
Facebook [40], usage of libraries that enforce unidirectional
and circular data flow in the application is considered a good
practice among the community. In our case, using such a
pattern, which considers rendering as a pure function of
the state, could therefore be very interesting, as the state of
any node could be modified from a remote control interface
in a transparent way for the node itself. However, existing
libraries are not firstly designed for distributed applications
and are difficult to adapt to our specific context for two
main reasons. First, they do not formalize nor integrate the
notion of discrete and volatile events very common in our
applications (e.g., triggering a sound). Second, they do not
provide a simple way to synchronize states across several
nodes in the network. To tackle these issues, we designed
a novel component implementing such unidirectional and
circular data flow approach and adapted to the particular
requirements of our applications.

720 J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October



ENGINEERING REPORTS SOUNDWORKS

Fig. 3. Overview of the architecture of a typical soundworks application.

4.1 Concepts and Requirements
In our contexts, the application of such a unidirectional

and circular pattern presents certain particularities, illus-
trated in Fig. 5.

First, the state of every client has to be kept synchronized
server-side. The rationale for this design strategy stands in
the importance of being able to remotely monitor and con-
trol any client of the system from a centralized point. In-
deed, the possibility to dynamically interact with any node
of the network and the rapid feedback loop it enables is
of primary importance in working situations. Furthermore,
it appears to be crucial in exploratory contexts (such as
artistic and research activities) in which the final applica-

tion cannot be specified beforehand and emerges from an
iterative process..

Second, Fig. 5 highlights the need of a certain granular-
ity in the definition and synchronization of the states. More
precisely, while some variables and parameters (named
globals in Fig. 5) needs to be accessible to every client
(e.g., master volume, mute), the particular state a client
(clients [2] in Fig. 5) should not be shared with all
its peers. It only needs to be monitored or controlled by
particular types of clients dedicated to authoring and/or
performance situations.

Fig. 4. Initialization steps of a soundworks client, mobile browser or Node.js process running on embedded hardware.

Fig. 5. Conceptual overview of a state management system enforcing unidirectional and circular data flow in a distributed context.

J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October 721



MATUSZEWSKI ENGINEERING REPORTS

Fig. 6. Overview of the protocol designed for the soundworks state management system.

4.2 Protocol and API
To fulfill these requirements while preserving the idea of

unidirectional and circular flow between actions, data, and
rendering, we designed a simple protocol and implemented
a new component. The main principles of the protocol we
propose are as follows:

—Allow any node to create a new state from a declared
schema.

—Allow any node to keep the state synchronized with
the server.

—Allow any node to observe new states created on the
network.

—Allow any node to attach to a state created by another
node.

Fig. 6 illustrates a generic scenario enabled by this proto-
col. A client (named "controller") observes the server
and attaches to the state created by another client (named
"player"). Once attached, the controller receives
a notification each time the state is updated by its cre-
ator (or any other attached node), enabling remote monitor-
ing. The controller can also update values of the attached
state, enabling remote control. At any moment, the con-
troller can detach from the state and stop receiving update
notifications3.

The protocol is abstracted behind a reduced API illus-
trated in the pseudocode example of Fig. 7. This simple
example also highlights two interesting aspects of the com-
ponent:

3 Note that no particular guard has been implemented to prevent
race conditions; therefore, the last event received wins.

722 J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October



ENGINEERING REPORTS SOUNDWORKS

Fig. 7. Pseudocode—Main aspects of the soundworks state
manager Application Programming Interface (API).

—The complete abstraction of network communications,
allowing users to focus on the application logic rather
than routing of network messages.

—The possibility to use schema declarations to generate
controls and monitoring interfaces, simplifying fast
prototyping and testing of ideas as well as implemen-
tation of dynamic and complex interfaces.

The simplicity of these synchronized data structures also
enables more advanced uses of dynamic composition of
states or distributed hierarchical state machines.

5 A HOST FOR PLUG-INS

Another important evolution of soundworks lies in its
ability to act as a plug-in host for extending its basic func-
tionalities. We believe this feature will also enhance mod-
ularity, allowing users to combine predefined components
for a specific application but also to simplify maintenance
and evolutions of both the framework and the applications.
A number of plug-ins dedicated to synchronizing clocks,
recording data, parsing, and watching the file system, to
name a few, are already available.

In this section, we first present a technical overview of
the implementation and registration of a soundworks
plug-in. Second, we illustrate this feature with two novel
components dedicated to runtime distributed scripting and
logging of arbitrary data.

5.1 Implementing and Registering Plug-Ins
Thanks to the dynamic nature of the language, the im-

plementation of a new plug-in is relatively simple. Fig.
8 illustrates several important aspects of the implementa-
tion of a new plug-in. First, the module exports a factory
function that itself returns the plug-in class definition. This
simple pattern allows soundworks to dynamically pass
the AbstractPlugin parent class to the plug-in factory
function and thus avoid hard-coded and circular dependen-
cies between the plug-in and the host. Second, it shows (cf.
start method) the different states that the plug-in must
report to the host. Indeed, reporting these steps are impor-
tant to be able to deal with all the different asynchronous

Fig. 8. Pseudocode—Main aspects of the implementation of a
soundworks plug-in.

Fig. 9. Pseudocode—Server-side configuration and registration
of a plug-in into soundworks.

tasks that have to be performed (e.g., network communi-
cation, particular graphical user interface [GUI] and user
interactions) during the initialization of the application.

Fig. 9 illustrates how a plug-in is registered into sound-
works (while Fig. 9 shows the process server-side, similar
code would be written client-side) as well as two other pos-
sibilities. First, the possibility for a given plug-in factory
to be used several times by registering it with a different
identifier (e.g., delay-1 and delay-2). For example,
this capacity could be used to synchronize different clocks
(e.g., audio clock and high-precision clock) on the same
client. Second, it shows how dependencies between several
plug-ins can be declared, enabling the possibility of imple-
menting higher-order plug-ins on top of the functionalities
offered by lower-level ones.

5.2 Examples
To illustrate the kind of functionalities the plug-in host

system enable, we present two plug-ins we created for the
novel version of the CoMo application (cf. Sec. 2.3). While
designed and implemented with this specific use-case in
mind, these two examples stands to be good examples of
how this architecture facilitate the creation of modular and
reusable components.

5.2.1 Runtime Distributed Scripting
The first plug-in we present, illustrated in Fig. 10, is

dedicated to the scripting of focused parts of the application
at runtime4. As such, the plug-in seeks to simplify the test

4https://github.com/collective-soundworks/soundworks-
plugin-scripting

J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October 723

https://github.com/collective-soundworks/soundworks-plugin-scripting
https://github.com/collective-soundworks/soundworks-plugin-scripting


MATUSZEWSKI ENGINEERING REPORTS

Fig. 10. Screenshot of the runtime distributed scripting interfaces.
The function written on the editor (right) is dynamically executed
on the two other clients (left) when updated.

of ideas and strategies (e.g., mappings, audio synthesis)
in a very efficient manner: without having to reload the
whole application—server and/or clients—nor having to
implement each time a dedicated control interface.

Additionally, we think this plug-in can play an impor-
tant pedagogical role by providing to users without expert
programming knowledge (e.g., researchers, composers) a
focused entry point where they can work within their own
domain of expertise without having to understand the whole
code base and architecture. We believe this functionality
may turn out as an important addition to the tools our frame-
work provide to support rapid prototyping, exploration, and
testing of ideas.

5.2.2 Logging and Data Recording
The second component we present is dedicated to logging

and storing on the server arbitrary data produced by any
node of the network5. Indeed, simplifying access to such
functionality to record and analyze data is obviously central
to many scientific and research practices.

However, we believe that the simplicity of usage, illus-
trated in the Fig. 11, will also help to develop usages in
other directions. For example, for auditing the system, test-
ing components or benchmarking concurrent implementa-
tions in real-world situations or for recording and replaying
examples of interactions (e.g., sensor data) to work on map-
pings and audio synthesis in the studio.

6 CONCLUSION AND FUTURE WORKS

In this paper, we have presented the motivations, de-
sign, and implementation aspects of the novel version of
soundworks, a framework dedicated to developing dis-
tributed multimedia applications on the web. First, we have
presented the different contexts such a framework should
support and illustrated these contexts with three projects we
developed over the last few years. These different contexts
allowed us to show that supporting particular patterns is im-

5https://github.com/collective-soundworks/soundworks
-plugin-logger

Fig. 11. Pseudocode—Creation of a "csv" log file and writing of
arbitrary data using the logger plug-in.

portant for exploratory tasks. We then presented the general
architecture and two novel features of our framework: 1) the
distributed state management system, dedicated to simpli-
fying the implementation of remote control and monitoring
and 2) its capacity to host external plug-ins, to foster com-
posability and extensibility.

While we think this novel version of soundworks pro-
vides solid foundations to further explore the possibilities
of the web platform in the area of distributed music systems,
it also opens new questions and large areas for new devel-
opments. An important aspect that needs to be reconsidered
and solved is the interoperability between the framework
and other tools, such as graphical or audio libraries. In this
regard, we think that while the schema format used for the
state management component could provide a good basis
in that direction, it is for now insufficiently specified. An-
other important limitation and direction of improvement is
the lack of support for collections in the state management
system; such additions would facilitate the implementa-
tion of advanced features such as presets or sound banks.
Finally, to further simplify and fasten the implementation
of new applications, a Command Line Interface tool for
scaffolding components, clients, and plug-ins would be an
important addition. We believe that the addition of these
features could foster further research and artistic practices
and maybe provide a common ground for pluralistic ap-
proaches in the area of distributed music systems.

7 ACKNOWLEDGMENT

The presented work has been initiated in the CoSiMa
research project funded by the French National Research
Agency (ANR, ANR-13-CORD-0010) and further devel-
oped in the framework of the Rapid-Mix Project from the
European Union’s Horizon 2020 research and innovation
program (H2020-ICT-2014-1, Project ID 644862) and the
EmoDemos project supported by the Philharmonie de Paris.
It has also been supported by the IRCAM (Institute for Re-
search and Coordination in Acoustics/Music, Paris) project
BeCoMe, which is featured in the Constella(c)tions resi-
dency of the Science, Technology & the Arts (STARTS)
program of the European Commission.

We would like to thank our project partners and our
colleagues at IRCAM for their precious contributions to
the project.

8 REFERENCES

[1] “WebAudio API Specification,” https://www.w3.
org/TR/webaudio/.

724 J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October

https://github.com/collective-soundworks/soundworks-plugin-logger
https://github.com/collective-soundworks/soundworks-plugin-logger
https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/


ENGINEERING REPORTS SOUNDWORKS

[2] H. Choi, “AudioWorklet: The Future of Web Au-
dio,” Proc. International Computer Music Conference, p. 7
(2018).

[3] “The WebSocket Protocol,” https://tools.ietf.org/
html/rfc6455.

[4] “WebGL Specification,” https://www.khronos.org/
registry/webgl/specs/latest/.

[5] A. Wirfs-Brock and B. Eich, “JavaScript: The first
20 years,” Proc. ACM on Programming Languages, vol. 4,
pp. 77:1–77:189, https://doi.org/10.1145/3386327.

[6] T. Berners Lee, R. Cailliau, J. Groff, and B. Poller-
mann, “World Wide Web: The Information Universe,” In-
ternet Research, vol. 20, no. 4, pp. 461–471, (2010 Aug.),
https://doi.org/10.1108/10662241011059471.

[7] L. Wyse and S. Subramanian, “The Viability of the
Web Browser as a Computer Music Platform,” Computer
Music Journal, vol. 37, no. 4, pp. 10–23 (2013 Dec.),
https://doi.org/10.1162/COMJ_a_00213.

[8] M. Weiser, “The Computer for the 21st Century,”
ACM SIGMOBILE Mobile Computing and Communi-
cations Review, vol. 3, no. 3, pp. 3–11 (2003 Dec.),
https://doi.org/10.1145/329124.329126.

[9] D. Guinard and V. Trifa, “Towards the Web of
Things: Web Mashups for Embedded Devices,” presented
at the In MEM 2009 in Proceedings of WWW 2009. ACM,
p. 8.

[10] S. Gresham-Lancaster, “The Aesthetics and History
of the Hub: The Effects of Changing Technology on Net-
work Computer Music,” Leonardo Music Journal, vol. 8,
pp. 39–44 (1998 Jan.), https://doi.org/10.2307/1513398.

[11] Á. Barbosa, “Displaced Soundscapes: A Survey
of Network Systems for Music and Sonic Art Creation,”
Leonardo Music Journal, vol. 13, pp. 53–59 (2003 Dec.),
https://doi.org/10.1162/096112104322750791.

[12] G. Weinberg, “Interconnected Musical Networks:
Toward a Theoretical Framework,” Computer Music Jour-
nal, vol. 29, no. 2, pp. 23–39 (2005 Jun.), https://doi.org/
10.1162/0148926054094350.

[13] F. Bayle, “Space, and More,” Organised Sound,
vol. 12, no. 3, pp. 241–249 (2007 Dec.), https://doi.org/
10.1017/S1355771807001872.

[14] B. Taylor, “A History of the Audience as a Speaker
Array,” presented at the Proceedings of the NIME17 Con-
ference (2017).

[15] I. Poupyrev, M. J. Lyons, S. Fels, and T. Blaine
(Bean), “New Interfaces for Musical Expression,” pre-
sented at the CHI ’01 Extended Abstracts on Human
Factors in Computing Systems, pp. 491–492, https://
doi.org/10.1145/634067.634348.

[16] B. Matuszewski, J. Larralde, and F. Bevilacqua,
“Designing Movement Driven Audio Applications Using
a Web-Based Interactive Machine Learning Toolkit,” Proc.
4th Web Audio Conference (2018).

[17] H.-J. Reinberger, “Experimental Systems: Histo-
riality, Narration, and Deconstruction,” Science in Con-
text, vol. 7, no. 1, pp. 65–81 (1994 Spring), doi :https://
doi.org/10.1017/S0269889700001599.

[18] H.-J. Rheinberger, “Consistency From the Perspec-
tive of an Experimental Systems Approach to the Sci-

ences and Their Epistemic Objects,” Manuscrito, vol. 34,
no. 1, pp. 307–321 (2011 Jun.), https://doi.org/10.1590/
S0100-60452011000100014.

[19] M. Schwab (Ed.), Experimental Systems: Future
Knowledge in Artistic Research (Leuven University Press,
Leuven, Belgium, 2016).

[20] C. Alexander, Notes on the Synthesis of Form (Har-
vard University Press, Cambridge, Massachusetts, 1964).

[21] “Soundworks Repository,” https://github.com/
collective-soundworks/soundworks.

[22] S. Robaszkiewicz and N. Schnell, “Soundworks—
A Playground for Artists and Developers to Create Collab-
orative Mobile Web Performances,” Proc. of the 1st Web
Audio Conference (2015).

[23] N. Schnell, B. Matuszewski, J.-P. Lambert, S.
Robaszkiewicz, O. Mubarak, D. Cunin, S. Bianchini,
X. Boissarie, and G. Cieslik, “Collective Loops: Mul-
timodal Interactions Through Co-Located Mobile De-
vices and Synchronized Audiovisual Rendering Based
on Web Standards,” Proc. of the Tenth International
Conference on Tangible, Embedded, and Embodied In-
teraction, pp. 217–224, https://doi.org/10.1145/3024969.
3024972.

[24] B. Matuszewski, N. Schnell, and F. Bevilacqua,
“Interaction Topologies in Mobile-Based Situated Net-
worked Music Systems,” Wireless Communications and
Mobile Computing, vol. 2019, pp. 1–9 (2019 Mar.),
https://doi.org/10.1155/2019/9142490.

[25] B. Matuszewski and F. Bevilacqua, “Toward a Web
of Audio Things,” Proc. 15th Sound and Music Computing
Conference (2018).

[26] B. Matuszewski, “Soundworks A Framework for
Networked Music Systems on the Web,” Proc. 5th Web
Audio Conference, p. 6 (2019).

[27] M. Puckette, “Combining Event and Signal Pro-
cessing in the MAX Graphical Programming Environ-
ment,” Computer Music Journal, vol. 15, no. 3, pp. 68–77
(1970 Feb.), https://doi.org/10.2307/3680767.

[28] M. Puckette, “A Case Study in Software for Artists:
Max/MSP and Pd,” in Art++, David-Olivier Lartigaud
(Ed.) (2016).

[29] “WebAudio-Patcher,” https://github.com/
Fr0stbyteR/webaudio-patcher.

[30] “Rhizome,” S. Piquemal, https://github.com/
sebpiq/rhizome.

[31] J. Allison, Y. Oh, and B. Taylor, “NEXUS: Collab-
orative Performance for the Masses, Handling Instrument
Interface Distribution Through the Web,” Proc. NIME13
Conference (2013).

[32] “Biotope Presentation,” https://youtu.be/
RmSujqdT6L0.

[33] P. Brinkmann, C. McCormick, P. Kirn, M. Roth, R.
Lawler, and H.-C. Steiner, “Embedding Pure Data with
libpd,” presented at the Pure Data Convention Weimar
2011.

[34] “Node-libpd Repository,” https://github.com/
ircam-jstools/node-libpd.

[35] J.-P. Lambert, S. Robaszkiewicz, and N. Schnell,
“Synchronisation for Distributed Audio Rendering over

J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October 725

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
https://doi.org/10.1145/3386327
https://doi.org/10.1108/10662241011059471
https://doi.org/10.1162/COMJ_a_00213
https://doi.org/10.1145/329124.329126
https://doi.org/10.2307/1513398
https://doi.org/10.1162/096112104322750791
https://doi.org/10.1162/0148926054094350
https://doi.org/10.1162/0148926054094350
https://doi.org/10.1017/S1355771807001872
https://doi.org/10.1017/S1355771807001872
https://doi.org/10.1145/634067.634348
https://doi.org/10.1145/634067.634348
https://doi.org/10.1017/S0269889700001599
https://doi.org/10.1017/S0269889700001599
https://doi.org/10.1590/S0100-60452011000100014
https://doi.org/10.1590/S0100-60452011000100014
https://github.com/collective-soundworks/soundworks
https://github.com/collective-soundworks/soundworks
https://doi.org/10.1145/3024969.3024972
https://doi.org/10.1145/3024969.3024972
https://doi.org/10.1155/2019/9142490
https://doi.org/10.2307/3680767
https://github.com/Fr0stbyteR/webaudio-patcher
https://github.com/Fr0stbyteR/webaudio-patcher
https://github.com/sebpiq/rhizome
https://github.com/sebpiq/rhizome
https://youtu.be/RmSujqdT6L0
https://youtu.be/RmSujqdT6L0
https://github.com/ircam-jstools/node-libpd
https://github.com/ircam-jstools/node-libpd


MATUSZEWSKI ENGINEERING REPORTS

Heterogeneous Devices, in HTML5,” Proc. 2nd Web Audio
Conference (2016).

[36] “Emodemos Website,” https://www.unige.ch/cisa/
emodemos/.

[37] “Constella(c)tions - Residency,” https://
vertigo.starts.eu/calls/starts-residencies-call-3/residencies/
constellactions/detail/.

[38] M. van Steen and A. S. Tanenbaum, “A Brief
Introduction to Distributed Systems,” Computing, vol.

98, no. 10, pp. 967–1009 (2016), https://doi.org/10.1007/
s00607-016-0508-7.

[39] L. Turchet, C. Fischione, G. Essl, D. Keller, and
M. Barthet, “Internet of Musical Things: Vision and Chal-
lenges,” IEEE Access, vol. 6, pp. 61994–62017 (2018),
https://doi.org/10.1109/ACCESS.2018.2872625.

[40] “Flux Pattern,” https://facebook.github.io/flux/.

THE AUTHOR

Benjamin Matuszewski

Benjamin Matuszewski studied musicology and music the-
ory before working for several years as web developer in
the media industry. Since 2014, he has been a researcher
and developer in the Sound Music Movement Interaction
team at IRCAM (Institute for Research and Coordination

in Acoustics/Music), Paris, France. His research focuses on
interactive and real-time distributed systems for music us-
ing Web technologies. Since 2015, he has also been a PhD
student at the CICM (Centre de recherche Informatique et
Creation Musicale, Paris 8 University).

726 J. Audio Eng. Soc., Vol. 68, No. 10, 2020 October

https://www.unige.ch/cisa/emodemos/
https://www.unige.ch/cisa/emodemos/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://vertigo.starts.eu/calls/starts-residencies-call-3/residencies/constellactions/detail/
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1109/ACCESS.2018.2872625
https://facebook.github.io/flux/

