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Dialogue Enhancement (DE) is one of the most promising applications of user interactivity
enabled by object-based audio broadcasting. DE allows personalization of the relative level
of dialogue for intelligibility or aesthetic reasons. This paper discusses the implementation of
DE in object-based audio transport with MPEG-H, with a special focus on source separation
methods enabling DE also for legacy content without original objects available. The user-
benefit of DE is assessed using the Adjustment/Satisfaction Test methodology. The test results
demonstrate the need for an individually adjustable dialogue level because of highly-varying
personal preferences. The test also investigates the subjective quality penalty from using source
separation for obtaining the objects. The results show that even an imperfect separation result
can successfully enable DE leading to increased end-user satisfaction.

0 INTRODUCTION

Low intelligibility of narration or dialogue due to too
high background level is one of the most common com-
plaints in broadcasting [1]. The underlying reason for low
intelligibility may be, e.g., hearing impairment [2], chal-
lenging listening environment [3], non-ideal reproduction
setup [4], listener’s language skill level in the dialogue lan-
guage [5, 6], or unfamiliar accent or dialect [7, 8]. Even
when the intelligibility is not compromised, the personal
preference of the listener may differ from the broadcast
mix [9, 10].

The problem of low intelligibility can be addressed by
providing a second “Clean Audio” track with less back-
ground sounds [11]. Producing additional audio mixes re-
quires more resources and it can be prohibitive in some
cases [1]. The idea of Dialogue Enhancement (DE) is
to provide the end-user with the possibility to adjust the
relative level of dialogue to their own preferences and
needs without the broadcaster providing multiple mixes
[9, 12]. A basic DE functionality can be provided us-
ing parametric audio object coding, e.g., [13], but the full
potential becomes available with object-based audio sup-

ported by the recent broadcast standards, e.g., MPEG-H
Audio [14–17].

A challenge for the deployment and adoption of object-
based audio transport is that object-based audio production
is gradually starting and much of the legacy content exists
only as mixes. The end-user may find it confusing or frus-
trating when the personalization functionality is available
only for a few new programs and not for the classics and
personal favorites. DE can be implemented having the dia-
logue as an object separate from the channel bed containing
the background. In this paper we propose a system using
a combination of source separation methods for extract-
ing the dialogue content from legacy broadcast audio mix
for enabling object-based audio broadcast with MPEG-H.
Even though the source separation result is not perfect, we
show through subjective evaluations that the result is still
improving the end-user satisfaction in the DE application.

The paper is organized as follows: Sec. 1.1 provides a
brief overview of MPEG-H. Sec. 1.2 gives an overview of
speech separation algorithms that can be used for obtaining
the objects. Sec. 2 details the proposed method, and Sec. 3
describes the subjective and objective evaluations. Sec. 4
gives the conclusions of the paper.
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1 BACKGROUND

1.1 Object-Based Audio Using MPEG-H
Based on MPEG Unified Speech and Audio Coding, the

MPEG-H Audio standard offers many extensions for use
in the context of immersive 3D audio, such as coding and
rendering of multi-channel and object signals, transmis-
sion of object metadata, the compressed transmission of
(speaker layout agnostic) object positions and trajectories,
and it allows for personalization and user interactivity on
the decoder side that is enabled and controlled by object
metadata. The MPEG-H Audio standard was published in
2015 [15], amended in 2017 with the so-called Phase 2
developments and the definition of MPEG-H Audio Low
Complexity (LC) Profile [16], and a Second Edition is being
issued [17].

The underlying main ideas of the new codec are to pro-
vide suitable means for an immersive experience, for univer-
sal delivery, and for personal interactivity. The immersive
sound experience is provided by supporting 3D loudspeaker
setups, adding the height dimension to surround sound, and
a binaural renderer provides 3D sound experience on head-
phones. The universal delivery means that the audio data
can be delivered in one universal format and might be auto-
matically rendered in the best possible reproduction mode
on the receiving device. Given these two principles, the
listening scenarios can be very different, ranging from a
reproduction via smartphone and loudspeaker in a noisy
city environment up to a high-end speaker setup in a quiet
home cinema scenario. By enabling user interactivity the
consumers can benefit from adjusting mixing parameters
according to the circumstances of their listening situation
and to their liking.

In the transport the audio channels might typically be
used for a channel bed, while the audio objects can be
utilized to enhance the channel bed through addition of
user-interactive elements for individual mixing as well as
for playback situation based rendering using, e.g., object
spatial trajectories conveyed as metadata. The objects can
also be controlled individually in terms of their dynamic
range, ensuring audibility in all dynamic range compres-
sion modes, and they can also be made selectable as al-
ternatives, e.g., different languages, commentary, or audio
accessibility aids.

A most demanded use-case is the individual adjustment
of the dialogue level over the background music or sound ef-
fects. The broadcaster may offer different recommended ad-
justment presets through object metadata, e.g., in sports sce-
narios a preset could be “Dialogue+” with a more prominent
commentary and attenuated stadium atmosphere, while an-
other preset could be “Stadium” without any commentary.
In addition to the presets, the users can fine-tune the rela-
tive dialogue level if this is enabled by metadata. A similar
setup is also useful for other content types, e.g., TV shows,
drama, or documentary, if the dialogue is available as a
separate signal.

These object-based use-cases as well as the combina-
tion of object-based audio with immersive sound have re-
cently been tested in field trials at the Eurovision Song

Contest in May 2018 in Lisbon [18] and in a sports event
in Paris in June 2018 [19]. Furthermore, MPEG-H Au-
dio has been adopted in a broad range of broadcast and
streaming application standards, such as ATSC 3.0 [20],
DVB-MPEG/UHD [21], and DVB-DASH [22], referenc-
ing the MPEG-H Audio LC Profile. Moreover, MPEG-H
Audio is already on air in a regular service of the terrestrial
UHD system in South Korea since May 2017. This system
is specified by TTA [23] based on ATSC 3.0.

1.2 Speech Separation
Object-based production is gradually starting. More con-

tent will become available, while much legacy content will
still be re-broadcast. In order to use the object-based trans-
port and enable DE, methods of audio source separation can
be applied to split the legacy mixture into estimates of the
dialogue and background, as illustrated in Fig. 1. Various
methods for separating a target signal from a mixture of sig-
nals have been developed in the past. These methods can be
categorized into model-based and data-driven approaches.

1.2.1 Model-Based Approaches
The model-based methods rely on modeling assumptions

about the signal or the mixing process. A signal model
describes characteristics of the input signals, while a mixing
model describes how the input signals are combined to the
mixture signal.

Many classical speech enhancement methods belong to
the model-based category. The estimation of the noise spec-
trum using minimum statistics tracking of local minima of
the signal energy in each sub-band has been proposed in
[24]. A non-linear update rule for the noise estimate and
faster updating has been proposed in [25]. Time-recursive
averaging algorithms estimate the noise spectrum when the
estimated signal-to-noise ratio (SNR) at a particular fre-
quency band is low. The estimation computes recursively
the weighted average of the previous noise estimate and
the present spectrum. The weights are determined as a
function of the speech presence probability or as a func-
tion of the estimated SNR in the particular frequency band
[26, 27]. Histogram-based methods rely on the assumption
that the distribution of the sub-band energy is bi-modal:
the low-energy mode for segments without speech or with
low-energy segments of speech and high-energy mode for
voiced speech and noise [28]. For a comprehensive review
of classic speech enhancement methods the reader is re-
ferred to [29].

Several methods for enhancing the dialogue in a stereo
recording make the assumption that the dialogue is panned
to the center, e.g., [30–32]. Other methods with a simi-
lar rationale are Azimuth Discrimination and Resynthesis
(ADRess) [33] and Degenerate Unmixing Estimation Tech-
nique (DUET) [34], where the separation is achieved by bi-
nary masking after clustering the time-frequency bins into
sets with similar inter-channel time and level differences.
Since the target and interfering signals often have similar
spatial cues, a separation based on inter-channel cues may
leave residual interference in the output signal.
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Fig. 1. Full system overview. In the case of legacy content (i.e., only available as mono, stereo, or 5.1 mix) source separation is applied
in order to estimate audio objects (e.g., dialogue and background) and enable user interactivity via MPEG-H (e.g., DE).

1.2.2 Data-Driven Approaches
In data-driven approaches a representation of the target

signal or a set of parameters for retrieving the target signals
from the input mixture is estimated. The estimation is based
on a model constructed from a set of training data and
derived by optimizing a criterion, e.g., by minimizing the
mean squared error between the true and the estimated
target, given the training data.

Non-negative matrix factorization (NMF) [35] factor-
izes a non-negative matrix, e.g., a magnitude spectrogram,
in a product of two low-rank non-negative matrices, e.g.,
spectral basis functions and the corresponding temporal
activations. Applying constraints on the bases, e.g., tem-
poral smoothness or sparseness, the factorization can be
guided to different solutions. NMF-based source separa-
tion approaches work mainly on a single-channel input.
Semi-supervised NMF uses a fixed dictionary of spectral
basis functions for speech, and for these only the tempo-
ral activations are subject to optimization. A number of
bases are left free for modeling the interferer, and for these
both the spectral and temporal bases are optimized. Vari-
ous ways of constructing the dictionary and applying con-
straints during the factorization have been discussed in the
literature, e.g., in [36] the dictionaries are constructed such
that their discriminative power is maximized, while in [37]
the spectral basis dictionaries from multiple talkers learned
independently are concatenated, and a block-sparsity con-
straint preferring to use the bases of only a few prototype
talkers when modeling an unknown talker is applied. The
latter is then improved in [38] by constructing the dictio-
nary to have a higher modeling capability and by using a
more strict sparsity constraint.

Another and widely used example of data-driven ap-
proaches are artificial neural networks (ANN) that have
been trained to output an estimate of a speech signal given
a mixture. During the training the adjustable parameters of
the network are determined such that a performance crite-
rion computed for a set of training data is optimized. Early
approaches with ANNs made a heavy use of elaborated fea-
ture extraction [39–41]. The first publication on DE using
supervised learning with neural networks [41] processed
single-channel input signals and used ANNs with only one
hidden layer.

For the processing of signals having more than one chan-
nel, spatial information has been employed in [42] for es-
timating a binary mask with a deep neural network (DNN)

having inter-channel features as inputs. A denoising autoen-
coder using multichannel features has been investigated in
[43]. In [44] a DNN with log-power spectra from one chan-
nel and channel-level difference has been used for predict-
ing the target signal spectrum, while the log-power spectra
of both input channels were used as inputs to a recurrent
network in [45]. Binaural processing with single-channel
features from a delay-and-sum beamformer output have
been used to predict the separation mask in [46]. For a
more comprehensive overview on deep learning for speech
separation the reader is referred to [47].

2 METHOD

The broadcast audio is highly diverse in input signal char-
acteristics with respect to channel format, background type,
level, and spatial cues [1], and this is challenging for the
source separation. Various source separation methods rely
on specific signal characteristics and cannot effectively pro-
cess all broadcast content alone. We address this challenge
by applying multiple source separation methods based on
complementary cues in parallel and by combining the re-
sults with a late fusion. Particular attention is paid to simple
and robust processing of the various channel formats used
in legacy content. All input signals are processed as stereo
signals: single-channel inputs are converted by duplicat-
ing the channel, and 5.1 inputs are processed by applying
the speech separation on the center channel and attenuat-
ing the other channels (assuming that the center channel
carries main portion of the dialogue). Consequently, only
the single-channel methods described in Secs. 2.3–2.5 are
effective when processing either mono or 5.1 input signals.

The processing takes place in short-time Fourier-
transform domain using 21.3 ms frames with 50% overlap
corresponding to 1024 and 512 samples at 48 kHz sam-
pling rate, a sine window, and discrete Fourier transform
length of double the window length. The two channels of
the mixture signal are represented by the matrices X L ( f, t)
and X R( f, t), with f being the frequency bin index and t the
time frame index.

The signal processing includes the following steps:

1. A pre-processing algorithm reduces the amount of
decorrelated energy between the two input channels re-
sulting in X ′

L ( f, t) and X ′
R( f, t), see Sec. 2.1.
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2. Multiple separation algorithms are run in parallel, each
producing spectral weighting matrices Gm,{L ,R}( f, t) for
both input channels L and R to obtain estimates of the
dialogue content in them, see Secs. 2.2–2.5.

3. A late fusion stage combines the separation masks from
M different modules into one, see Sec. 2.6.

4. A post-processing algorithm is used to smooth the out-
put trading some interferer attenuation performance for
a higher perceptual quality, see Sec. 2.7.

5. The final spectral weighting masks Gout
{L ,R}( f, t) are ap-

plied on the input signal channels for obtaining esti-
mates of the dialogue

X̂ D,{L ,R}( f, t) = X ′
{L ,R}( f, t)Gout

{L ,R}( f, t) (1)

and the background

X̂ BG,{L ,R}( f, t) = X{L ,R}( f, t) − X̂ D,{L ,R}( f, t). (2)

The processing modules are discussed in more detail in
the following. Some of them are single-channel methods;
these take the mid signal of the mid/side representation of
a stereo signal as the input.

2.1 Primary / Ambient Decomposition
The Primary / Ambient Decomposition (PAD) module

attenuates the ambient sound components in the input. This
can be implemented in various ways, see, e.g., [48–50],
with the main principle being the discrimination between
direct primary sound sources and diffuse ambience com-
ponents. The PAD algorithm operates by finding a rotation
of the stereo scene that makes the energies of the rotated
channels equal, based on the assumption that by doing this
the center of the rotated scene points at the primary di-
rect audio source. A center extraction algorithm is used for
splitting the signal into primary and ambient components
before reversing the rotation.

2.2 Center Extraction
The Center Extraction (CE) module relies on the assump-

tion that the dialogue is panned to the center of the stereo
scene. This assumption has proven its usability already, e.g.,
in [30, 32]. The implementation used here is based on the
ratio between the smaller and the larger magnitude of the
input channels:

GC E ( f, t) = min
(|X ′

L ( f, t)|, |X ′
R( f, t)|)

max
(|X ′

L ( f, t)|, |X ′
R( f, t)|) . (3)

The same separation mask is used for both input channels
ensuring that the spatial properties of the signal are not
distorted.

2.3 Non-Negative Matrix Factorization
The single-channel NMF method is derived from a

method enforcing block-sparsity [38]. It uses a speech spec-
tral basis dictionary of 75 groups, each with 10 entries, and
20 free bases to model the background. For complexity
reasons, the frequency resolution of the signal magnitude
spectrum is reduced using a close-to-logarithmic mapping

from the 1025 bins to 192 bands before the computation
and this is inverted after the source separation mask has
been computed. The speech separation mask is obtained
from the mixture magnitude spectrogram Xin( f, t) and the
background magnitude estimate X̂ BG( f, t) with

G N M F ( f, t) = max
(
0, X2

in( f, t) − X̂2
BG( f, t)

)

X2
in( f, t)

. (4)

2.4 Harmonic / Percussive / Residual
Decomposition

The Harmonic / Percussive / Residual (HPR) decom-
position is a single-channel method that applies a median
filter to the input magnitude spectrum along either time
or frequency axis producing a magnitude spectrum with
enhanced sustained or percussive content [51]. Three sepa-
ration masks are obtained: one for extracting the harmonic
components, one for the percussive components, and one
for the components not showing a clear harmonic or per-
cussive structure. In [51] the masks are binary, while soft
masks are used in our implementation. Speech contains
both harmonic (e.g., vowels) and percussive components
(e.g., fricatives), so we run HPR with rather extreme pa-
rameters compared to [51]. G H ( f, t) and G P ( f, t) are ob-
tained (with values in the range 0 − 1), where G H ( f, t)
extracts sustained sounds clearly longer than vowels and
G P ( f, t) extracts highly dynamic percussive components
longer than consonants and being energetic outside the fre-
quency regions characteristic of fricatives (e.g., explosions
and shooting). The estimated sustained sounds and explo-
sions are suppressed by the residual separation mask

G H P R( f, t) = min(1 − G H ( f, t), 1 − G P ( f, t)). (5)

2.5 Single-Channel Speech Enhancement
The Single-Channel Speech Enhancement (SCSE) mod-

ule applies a recursive averaging algorithm based on speech
presence probability. This module makes the assumption
that the noise has slow-varying second-order statistics
that can be estimated in individual frequency bands as a
weighted average of past noise estimates and the present
noisy speech power spectrum. The weights change adap-
tively depending on the speech presence probability, ideally
by updating the noise estimate very fast during speech ab-
sence and (almost) not updating during speech presence.
Our updating rule is based on the likelihood ratio, calcu-
lated assuming Gaussian spectral components as in [26].
The noise power estimate is used to compute the weighting
mask GSC SE ( f, t) as the log-spectral amplitude estimator
from Ephraim and Malah [52].

2.6 Fusion of Separation Modules
After obtaining the spectral weighting masks for dia-

logue content separation from multiple modules, these are
combined with late fusion. The main task for the fusion
is that it should improve the performance compared to the
single best module, e.g., by locally selecting the best mod-
ule based on a quality prediction [53], by using a DNN for
combining the separation results [54, 55], or by a weighted
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Table 1. Separation performance comparison of the proposed combined method (All), and the individual separation
modules (Secs. 2.2–2.5). The first three rows are the BSSEval measures (in dB) for the separated dialogue and the
last two rows the change from the input mixture. In each cell, the first value is the mean over items for the stereo

input data, and the second value is the mean over items for mono input data.

All CE NMF HPR SCSE

SIR 14.7 / 12.3 9.4 / 2.8 10.8 / 10.9 3.3 / 1.6 6.6 / 7.2
SDR 8.5 / 8.0 7.4 / 2.7 7.3 / 7.6 2.9 / 1.3 5.2 / 5.7
SAR 10.0 / 10.5 13.1 / 20.3 0.6 / 11.1 16.6 / 16.8 12.8 / 13.1
�SIR 13.1 / 9.4 7.8 / –0.2 9.2 / 7.9 1.6 / –1.4 5.0 / 4.3
�SDR 6.8 / 5.1 5.7 / –0.3 5.7 / 4.6 1.3 / –1.7 3.6 / 2.7

average of the separation results after predicting the weight-
ing [56]. After experimenting with various fusion methods,
including DNN-based regression [55], the proposed system
uses a much simpler approach of an element-wise minimum
of the dialogue separation masks:

G{L ,R}( f, t) = min
(
G1,{L ,R}( f, t), ..., G M,{L ,R}( f, t)

)
.

(6)

For each time/frequency-tile the maximum background
attenuation from multiple separation methods is se-
lected, assuming the estimation error being mainly under-
suppression of the background, e.g., when the stereo mod-
ules have no effect on mono input. Compared to the more
complex approaches tested, minimum fusion provides bet-
ter performance while being computationally inexpensive.

2.7 Musical Noise Reduction
Musical noise is a recurrent issue for spectral weighting

techniques for source separation. Due to localized estima-
tion errors isolated peaks may appear in the processed spec-
trum, resulting in perceptually annoying wobbling sounds
with fast changing pitch. In order to reduce this effect, the
adaptive mask smoothing proposed in [57] is adopted as
post-filter, applied on G{L ,R}( f, t), and Gout

{L ,R}( f, t) is ob-
tained.

2.8 Discussion
Source separation methods in reality are not able to pro-

vide ideal separation, but the result still contains both cross-
talk and artifacts. The important question is if the result still
is good enough for the intended application. In an experi-
ment from the BBC, they found that attenuating the back-
ground music by 1.4 dB from the default level “allowed
many more people to understand what was being said with-
out compromising the editorial vision” [58]. Reproducing a
mixture of the separated dialogue and background reduces
the prominence and audibility of source separation artifacts
and this fits well together with the idea of DE application
that the mixing ratio between the dialogue and background
is only adjusted. Since the actual adjustment of the mixing
ratio is done by the end-user, he can decide it depending
on the personal needs and opinion of the quality within the
limits set by the broadcaster.

3 EVALUATION

3.1 Evaluation of Fusion
First we evaluate the performance of each separation

module from Secs. 2.2–2.5 independently (including the
pre- and post-processing stages, Secs. 2.1, 2.7) and compare
it with the result after the fusion (Sec. 2.6). The data consists
of 11 synthetic items, each 10 s in length, with mono cen-
tered dialogue and a stereo background. The separation per-
formance is evaluated using the BSSEval [59] measures of
Signal-to-Interferer Ratio (SIR), Signal-to-Distortion Ra-
tio (SDR), and Signal-to-Artifacts Ratio (SAR), and the
change of SIR (�SIR) and SDR (�SDR) from the input
mixture. The proposed system is also tested using mono
inputs obtained by downmixing the stereo items. The eval-
uation results are given in Table 1, from which we see that
the fusion result outperforms the individual modules for
both mono and stereo inputs.

3.2 Subjective Evaluation in Application
Methodology. In [10] we presented the Adjust-

ment/Satisfaction Test (A/ST) where the participants inter-
act with a user-adjustable system and their adjustments and
the resulting satisfaction levels are studied. This allows an-
alyzing to what extent the available personalization is used
and quantifying the quality of experience improvement. We
use the A/ST here in the form of a DE application, in which
the user adjusts the dialogue level in the signal, compar-
ing the proposed blind source separation (BSS) system,
referred to as SBSS, with using the original objects (OO),
referred to as SOO.

Environment. The experiment is carried out in a listen-
ing room resembling a quiet low-reverberant living room
with a 5.1 setup with high-end studio monitors positioned
according to [60]. The user interface is displayed on a TV
positioned above the center loudspeaker. The participants
sit on a chair with fixed position, and they can control the
relative level of the dialogue via a rotating knob.

Participants. The test involves 14 German participants
with good knowledge of the English language. They have
taken part in a sensory test before; they have normal hearing;
and they are voluntary, remunerated, and between 22 and
38 years old (median age is 25).

Instructions. The participants are not informed that
two different systems are tested. Still, the test instructions
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Table 2. Initial loudness difference for the center channel
(LDc

0) given in Loudness Units (LU), percentage of frames with
active speech (AS%), and type of background for each item.

Item LDc
0 AS% Background

1Docu 7.18 78 Ambient music
2VOWar 3.64 67 War shooting and explosions
3Cheer 18.6 90 Cheering crowd indoors
4Docu 7.50 67 Ambient music
5Docu 14.9 51 Instrumental classical music
6Docu 8.20 82 Instrumental jazz music and

ambient noise
7Cheer 5.49 87 Cheering crowd outdoors

Median 7.50 78

mention the possibility that the personalization might in-
troduce quality degradations (even if this is true only for
SBSS). The participants are asked to adjust the relative dia-
logue level in the the audio so that they can easily follow the
text, yet keeping the background enjoyable, i.e., to find the
best compromise between the preferred relative dialogue
level and a sound quality they would accept in television.
After the adjustment, the participants are asked to rate the
difference in satisfaction between the initial mix and the
personalized version. The satisfaction is assessed directly
after adjusting each item, i.e., using the “Experience con-
figuration” from [10].

Stimulus. Seven 5.1 audio excerpts for TV with the
length of 7–12 s and the sampling frequency of 48 kHz
are considered as test material: four excerpts feature fe-
male English talkers and three feature male English talkers.
These excerpts are selected to have loud background, po-
tentially making the dialogue tiring to follow. Each item is
presented once with SOO and once with SBSS in a pseudo-
random order. The repetitions of an item are not directly
consecutive but interleaved with other items.

Table 2 shows the initial loudness differences (LDs)1

between the dialogue and the background in the center
channel (LDc

0). The initial LDs considering all the 5.1
channels are shown by the dashed black line in Fig. 2
(initial LD0). The listeners are able to modify the rela-
tive level of the speech from –10 to +20 LU with respect
to the initial LD0 while operating SOO. While operating
SBSS the available range depends on the separation per-
formance and is item-dependent. The maximum available
LD is shown by the dashed blue line in in Fig. 2 (max
SBSS). All the items are loudness-normalized to have equal
integrated loudness [61] both in their initial and adjusted
versions.

Results. Fig. 2 depicts the mean of the listeners’ ad-
justments and satisfaction levels (solid lines) together with
box plots2. High subjective variance is visible, i.e., subjects
have very different preferences for the relative level of the

1 Loudness is herein meant as integrated loudness as per
BS.1770-4 [61] and measured in Loudness Units (LU).

2 The boxes correspond to the 25/75% quantiles of the data, the
central black bar corresponds to the median, the whiskers indicate

Table 3. ANOVA of the LD adjustments: degrees of freedom
(d.f.), effect size η2 (as a percentage of the total variation

explained), and p-values (if lower than 0.05, we reject the null
hypothesis).

Effect d.f. η2 (%) p

Subject 13 21.7 0.02
SOO / SBSS 1 15.8 0.00
Music Background 1 11.2 0.00
Item 5 7.8 0.00
Item × Subject 65 15.3 0.03
Item × SOO / SBSS 5 6.6 0.00
Subject × Music Back. 13 6.4 0.03
SOO / SBSS × Music Back. 1 1.1 0.01
SOO / SBSS × Subject 13 2.0 0.46
Error 78 12.0

dialogue. This confirms that a unique one-size-fits-all mix
would hardly satisfy all listeners and DE is desired.

This is also supported by the ANOVA of the LD ad-
justments, where four factors are considered: item, subject,
type of used system (SOO / SBSS), and type of background
(i.e., if the background contains music or not, referred to
as “Music Background”). Subject is considered as random
factor, as it consists of samples randomly taken from the
relevant population on which we would like to generalize.
Item is nested inside Music Background. Table 3 reports
the ANOVA results. The factor “Subject” accounts alone
for 21.7% of the total variation.

Fig. 2 shows also that slightly lower levels of adjust-
ment are preferred for SBSS than for SOO, resulting in lower
satisfaction. In fact, the subjects have to trade-off between
the desired LD (selected while operating SOO) and the dis-
tortions, which SBSS introduces for higher levels of adjust-
ment. Yet, the difference between SBSS and SOO in terms of
selected LD is smaller than 1 LU on average and both sys-
tems clearly increase the satisfaction. Averaging over the
listeners, the satisfaction increase correlates with the LD
adjustment (i.e., the difference between the selected LD
and the initial LD) with Pearson’s r = 0.9.

To support this observation, an ANOVA is run on the sat-
isfaction scores considering LD adjustment, item, subject,
and music background as main factors and no interaction
is considered. All four factors result in statistical signifi-
cance (p < 0.05), with LD adjustment accounting alone for
62% of the total variation, subject accounting for 12%, and
the remaining factors together accounting for 6%. It can be
concluded that the adjustment has a noticeable and positive
effect and the personalization offered by SBSS is desired,
despite the distortions potentially introduced.

These observations confirm the results obtained in [10],
where the same system SBSS was tested using stereo material
with speech panned to the center, i.e., SBSS could exploit also
stereo methods such as PAD and CE. Fig. 3 summarizes the
results from this previous evaluation.

the minimum or maximum points within 1.5 IQR (interquartile
range, and points are displayed with a cross if they are within
1.5–3 times the IQR and with a circle if they exceed 3 IQR.
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Fig. 2. Mean selections and box plots for the preferred LD (upper plot) and resulting satisfaction levels (lower plot). SOO (main red
lines) is compared with SBSS (main blue lines with crosses). Test signals are 5.1 with dialogue mixed in the center channel.
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Fig. 3. Previous evaluation with stereo material and speech panned to the center C©2018 IEEE. Reprinted, with permission, from [10].
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4 CONCLUSIONS

Dialogue Enhancement (DE) enables the delivery of opti-
mal dialogue mixing to every listener, be it in terms of intel-
ligibility or for aesthetic preference. This paper investigated
technology for the implementation of DE in object-oriented
broadcasting, such as MPEG-H. A special focus of the pa-
per was on the use of source separation methods to extract
dialogue and background from the complex sound mixture
also in the case when these have not been made available
during the production process, i.e., for legacy content. The
presented source separation technology integrates several
separation approaches with known limitations into a more
powerful overall architecture.

The second main focus of the paper was on the evalua-
tion of the subjective benefit of individually adjustable DE
using the Adjustment/Satisfaction Test. The listeners made
extensive use of the dialogue level personalization and the
preferred dialogue level had a high variance among the lis-
teners indicating the need for this functionality. The use of
the personal adjustment increased the listener satisfaction
clearly. The extensive use of personalization and increased
satisfaction were observed also when using the proposed
source separation method for obtaining the dialogue and
background objects. The cost of the imperfect source sep-
aration compared to using the original objects is visible in
the user satisfaction as a slightly smaller improvement.

In summary, it was shown that the benefits of object-
based audio, as they are used in modern broadcasting sys-
tems, can also be used when broadcasting legacy content
that was not produced in an object-oriented way by using
current source separation technology. This may lower the
transition barrier for the adoption of object-oriented broad-
casting standards.

In the future, substantial further improvements in source
separation can be expected inspired from the field of deep
learning methods, both for the fusion of individual source
separation module outputs and for the source separation
task itself.
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[45] J. M. Martı́n-Doñas, et al., “Dual-Channel DNN-
Based Speech Enhancement for Smartphones,” pre-
sented at the IEEE 19th Int. Workshop Multime-
dia Signal Process. (2017 Oct.), https://doi.org/10.1109/
MMSP.2017.8122273.

[46] X. Zhang and D. Wang, “Deep Learning Based
Binaural Speech Separation in Reverberant Environ-
ments,” IEEE/ACM Trans. Audio Speech Lang. Pro-
cess., vol. 25, no. 5 (2017 May), https://doi.org/10.1109/
TASLP.2017.2687104.

[47] D. Wan and J. Chen, “Supervised Speech Separa-
tion Based on Deep Learning: An Overview,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 26, no.
10, pp. 1702–1726 (2018 Oct.), https://doi.org/10.1109/
TASLP.2018.2842159.

[48] C. Avendano and J.-M. Jot, “A Frequency-Domain
Approach to Multichannel Upmix,” J. Audio Eng. Soc.,
vol. 52, pp. 740–749 (2004 Jul./Aug.).

518 J. Audio Eng. Soc., Vol. 67, No. 7/8, 2019 July/August



PAPERS SOURCE SEPARATION FOR ENABLING DIALOGUE ENHANCEMENT

[49] J. Merimaa, et al., “Correlation-Based Ambience
Extraction from Stereo Recordings,” presented at the 123rd
Convention of the Audio Engineering Society (2007 Oct.),
convention paper 7282.

[50] K. M. Ibrahim and M. Allam, “Primary-Ambient
Source Separation for Upmixing to Surround Sound
Systems,” IEEE Int. Conf. Acoust. Speech Signal Pro-
cess., pp. 431–435 (2018 Apr.), https://doi.org/10.1109/
ICASSP.2018.8461459.

[51] J. Driedger, et al., “Extending Harmonic-Percussive
Separation of Audio Signals,” 15th Int. Soc. Music Inform.
Retrieval Conf., pp. 611–616 (2014 Oct.).

[52] Y. Ephraim and D. Malah, “Speech Enhance-
ment Using a Minimum Mean-Square Error Log-Spectral
Amplitude Estimator,” IEEE Trans Acoust. Speech Sig-
nal Process., vol. 33, no. 2, pp. 443–445 (1985 Apr.),
https://doi.org/10.1109/TASSP.1985.1164550.

[53] E. Manilow, et al., “Predicting Algorithm Effi-
cacy for Adaptive Multi-Cue Source Separation,” 2017
IEEE Workshop Appl. of Signal Process. Audio and Acous-
tics, pp. 274–278 (2017 Oct.), https://doi.org/10.1109/
WASPAA.2017.8170038.

[54] E. M. Grais, et al., “Combining Mask Esti-
mates for Single Channel Audio Source Separation Us-
ing Deep Neural Networks,” Interspeech 2016, pp. 3339–
3343 (2016 Sep.), https://doi.org/10.21437/Interspeech.
2016-216.

[55] A. Ragano and A. Hines, “Exploring a Perceptually-
Weighted DNN-Based Fusion Model for Speech Separa-
tion,” 26th AIAI Irish Conf. Artif. Intell. and Cogn. Sci.,
pp. 21–32 (2018 Dec.).

[56] X. Jaureguiberry, et al., “Fusion Methods for
Speech Enhancement and Audio Source Separation,”
IEEE/ACM Trans. Audio Speech Lang. Process., vol. 24,
no. 7, pp. 1266–1279 (2016 Jul.), https://doi.org/10.1109/
TASLP.2016.2553441.

[57] T. Esch and P. Vary, “Efficient Musical Noise
Suppression for Speech Enhancement System,” IEEE Int.
Conf. Acoust. Speech Signal Process., pp. 4409–4412 (2009
Apr.), https://doi.org/10.1109/ICASSP.2009.4960607.

[58] “Is the Background Music Too Loud?” http://www.
bbc.co.uk/blogs/tv/2011/03/is-the-background-music-too-
loud. shtml, accessed: 2018-06-26.

[59] E. Vincent, R. Gribonval, and C. Févotte, “Per-
formance Measurement in Blind Audio Source Sep-
aration,” IEEE Trans. Audio Speech Lang. Process.,
vol. 14, no. 4, pp. 1462–1469 (2006 Jun.), https://doi.org/
10.1109/TSA.2005.858005.

[60] ITU-R Recommendation BS.775-3, “Multichannel
stereophonic sound system with and without accompanying
picture” (2012 Aug.).

[61] ITU-R Recommendation BS.1770-4, “Algorithms
to measure audio programme loudness and true-peak audio
level” (2015 Oct.).

J. Audio Eng. Soc., Vol. 67, No. 7/8, 2019 July/August 519



PAULUS ET AL. PAPERS

THE AUTHORS

Jouni Paulus Matteo Torcoli Christian Uhle Jürgen Herre

Sascha Disch Harald Fuchs

Jouni Paulus received the M.Sc.(Eng.) and D.Sc.(Tech.)
degrees in information technology from Tampere Univer-
sity of Technology (TUT), in 2002 and 2010, respectively.
From 2002 to 2010 he was working as a researcher at the
Department of Signal Processing at TUT with the topic
of signal-based music content analysis. In 2010 he joined
Fraunhofer Institute for Integrated Circuits (IIS) in Erlan-
gen, Germany, as a research scientist, and as a member of
the International Audio Laboratories Erlangen. Dr. Paulus
has contributed to the development and standardization
of MPEG-D SAOC and MPEG-H 3D Audio. His current
research interests as a senior scientist at Fraunhofer IIS in-
clude object-based and spatial audio coding, informed and
blind source separation, machine learning for audio appli-
cations, speech intelligibility enhancement, and subjective
evaluation of the resulting audio processing algorithms.

•
Matteo Torcoli received his B.Sc. degree in computer

engineering from the University of Brescia in 2011 and his
M.Sc. degree in sound and music computer engineering
from the Politecnico di Milano in 2014, cum laude. He
worked on his M.Sc. thesis on dereverberation for next-
generation hearing aids at the International Audio Labo-
ratories Erlangen. He then joined the Audio and Media
Technologies division of Fraunhofer IIS, where he is cur-
rently working as R&D engineer. His research focus is on
applying digital signal processing and machine learning
for developing accessibility features. In particular, he has
been working on dialogue enhancement, on ways to en-
able it also without the original audio objects, and on the
subjective and objective evaluation of such an experience.

•
Christian Uhle is chief scientist in the Audio and Media

Technologies division of the Fraunhofer Institute for Inte-
grated Circuits (IIS) in Erlangen, Germany. He received the
diploma engineer degree and the Ph.D. degree in electri-
cal engineering from the Technical University of Ilmenau,
Germany, in 1997 and 2008, respectively. From 1998 to
2000 he developed a real-time operation system for digital
signal processors at the Technical University of Ilmenau.

From 2000 until 2005 he was research associate and doc-
toral student at the Fraunhofer Institute for Digital Media
Technology (IDMT) working on the semantic analysis of
musical audio signals. Since 2006 he is research associate
at Fraunhofer IIS. His research activities comprise semantic
audio processing, blind source separation, dialog enhance-
ment, digital audio effects, automotive sound reproduction,
and natural language processing. Dr. Uhle is a member of
the AES and chairs the AES Technical Committee on Se-
mantic Audio Analysis.

•
Jürgen Herre joined the Fraunhofer Institute for Inte-

grated Circuits (IIS) in Erlangen, Germany, in 1989. Since
then he has been involved in the development of percep-
tual coding algorithms for high quality audio, including
the well-known ISO/MPEG-Audio Layer III coder (aka
“MP3”). In 1995, Dr. Herre joined Bell Laboratories for
a PostDoc term working on the development of MPEG-
2 Advanced Audio Coding (AAC). By the end of 1996
he went back to Fraunhofer to work on the development of
more advanced multimedia technology including MPEG-4,
MPEG-7, MPEG-D, and MPEG-H, currently as the Chief
Executive Scientist for the Audio & Media Technologies
activities at Fraunhofer IIS, Erlangen. In September 2010,
Dr. Herre was appointed professor at the University of Er-
langen and the International Audio Laboratories Erlangen.
Dr. Herre is a fellow of the Audio Engineering Society, co-
chair of the AES Technical Committee on Coding of Audio
Signals, and vice chair of the AES Technical Council. He
served as a member of the IEEE Technical Committee
on Audio and Acoustic Signal Processing and as an asso-
ciate editor of the IEEE Transactions on Speech and Audio
Processing and is an active member of the MPEG audio
subgroup.

•
Sascha Disch received his Dipl.-Ing. degree in electri-

cal engineering from the Technical University Hamburg-
Harburg (TUHH) in 1999 and joined the Fraunhofer In-
stitute for Integrated Circuits (IIS) the same year. Ever
since he has been working in research and development

520 J. Audio Eng. Soc., Vol. 67, No. 7/8, 2019 July/August



PAPERS SOURCE SEPARATION FOR ENABLING DIALOGUE ENHANCEMENT

of perceptual audio coding and audio processing. From
2007 to 2010 he was a researcher at the Laboratory of Infor-
mation Technology, Leibniz University Hannover (LUH),
receiving his Doctoral Degree (Dr.-Ing.) in 2011. He con-
tributed to the standardization of MPEG Surround, MPEG
Unified Speech and Audio Coding (USAC), MPEG-H 3D
Audio, and the 3GPP Enhanced Voice Services (EVS)
codec. His research interests as a Chief Scientist at Fraun-
hofer IIS and a member of the International Audio Labo-
ratories Erlangen include waveform and parametric audio
coding, audio bandwidth extension, and digital audio ef-
fects.

•
Harald Fuchs received his diploma in electrical engi-

neering from the University of Erlangen, Germany, in 1997
and joined Fraunhofer IIS in the same year. From 1997 to
2002 he was a software developer for video codecs and

multimedia streaming systems. From 2002 onwards, he
concentrated on media system aspects and standardization,
contributing to several standardization organizations, in-
cluding MPEG, DVB, ATSC, DLNA, OMA, OIPF, ISMA,
and HbbTV. Since 2011 his main interest is on object-
based audio, especially focusing on how media applications
can benefit from object-based and next generation audio.
As a Senior Business Development Manager, Audio for
TV Broadcast, he has taken, specifically, care of enabling
MPEG-H Audio in broadcast and streaming systems, like
ATSC 3.0 and DVB. From 2013 to 2018 he was group
manager semantic audio coding, with the main target of
enabling object-based audio for dialogue enhancement and
better speech intelligibility in broadcast applications. Since
2017 he is product manager for MPEG-H Audio, and since
2018 he is head of the Media Systems and Applications
department.

J. Audio Eng. Soc., Vol. 67, No. 7/8, 2019 July/August 521



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


