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This paper presents a study of piano pedaling gestures and techniques on the sustain pedal
from the perspective of measurement, recognition, and visualization. Pedaling gestures can
be captured by a dedicated measurement system where the sensor data can be simultaneously
recorded alongside the piano sound under normal playing conditions. Using the sensor data
collected from the system, the recognition is comprised of two separate tasks: pedal onset/offset
detection and classification by technique. The onset and offset times of each pedaling technique
were computed using signal processing algorithms. Based on features extracted from every
segment when the pedal is pressed, the task of classifying the segments by pedaling technique
was undertaken using machine learning methods. We compared Support Vector Machines
(SVM) and hidden Markov models (HMM) for this task. Our system achieves high accuracies,
over 0.7 F1 score for all techniques and over 0.9 on average. The recognition results can be
represented using novel pedaling notations and visualized in an audio-based score following
application.

1 INTRODUCTION

Pedaling is among the important playing techniques that
lead to expressive piano performance. It is comprised of
not only the onset and offset information that composers
often indicate in the score but also gestures related to the
musical interpretation by performers such as part-pedaling
techniques.

Modern pianos usually have three pedals, among which
the most frequently used is the sustain pedal. The use of the
sustain pedal constitutes one of the main musical gestures
to create different artistic expressions through subtly color-
ing resonance. The sustain pedal lifts all dampers and sets
all strings free to vibrate sympathetically with the current
note(s) being played. Given that detecting pedaling nuances
from the audio signal alone is a rather challenging task [1],
we propose to (a) sense pedaling gestures from piano per-
formances using a non-intrusive measurement system; (b)
devise a method for reliable recognition of pedaling tech-
niques; and (c) visualize the results that indicate the onset
and offset times of the sustain pedal and the use of part-
pedaling, i.e., pedal depth or the extent to which the pedal is
pressed. Pedaling is not consistently notated in sheet music
and, as we noted, there are important subjective variations
of pedal use related to expressive performance. Therefore,
this study benefits many applications, including automatic
music transcription and piano pedagogy.

This paper is organized as follows. We first introduce the
background of piano pedaling techniques and related works
in Sec. 2. We then present the measurement system for data
acquisition in Sec. 3. The process of database construction
is described in Sec. 4. The methods of pedaling recognition
including onset/offset detection and part-pedaling classifi-
cation are discussed in Sec. 5. A visualization system and
other potential use cases are outlined in Sec. 6. We finally
conclude and discuss our future works in Sec. 7.

2 BACKGROUND

2.1 Piano Pedaling Techniques
Pedals have existed in pianos since the 18th century when

Cristofori introduced a forerunner of the modern soft pedal.
It took many decades before piano designers settled on the
standardization of three pedals in the late 19th century. Mir-
roring the development of the pedals themselves, the nota-
tions used for indicating pedaling techniques have likewise
changed over the centuries. Composers like Chopin and
Liszt actively indicated the use of pedals in their works [2],
while Debussy rarely notated pedaling techniques despite
the importance of pedal use for the intended or an elaborate
interpretation of his music [3]. Experts agree that pedaling
in the same piano passage can be executed in many differ-
ent ways, even when pedal markings are provided [4]. This
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is adjusted by the performer’s sense of tempo, dynamics,
textural balance as well as the settings or milieu in which
the performance takes place [3].

Pedaling techniques can vary in two domains: timing and
depth [2]. This is especially the case for the sustain pedal.
There are three main pedaling techniques considering the
timing of the pedal with respect to note onsets. Rhythmic
pedaling is employed when the pedal is pressed at the same
time as the keys. This technique supports metrical accen-
tuation, which is an important aspect of Classical-era (ex-
tending roughly from the late 18th century to the mid 19th
century) performance. Pressing the pedal immediately after
the note attack is called syncopated or legato pedaling. This
enables the performer to have “extra fingers” in situations
where legato playing is not possible with any fingering.
Anticipatory pedaling, first described in the 20th century,
can only be applied after a silence and before the notes
are played. This technique is used to produce greater reso-
nance at the commencement of the sound. Besides variation
in pedal timing, professional pianists apply part-pedaling
techniques that change as a function of the depth of the sus-
tain pedal. Apart from full pedal, Schnabel defined another
three levels of part-pedaling in [5]. These are referred to as
1/4 pedal, 1/2 pedal, and 3/4 pedal. It should be noted that
these terms neither refer to specific positions of the pedal,
nor to specific positions of the dampers, but only charac-
terize the amount of sound that remains when the keys are
released. The position of the pedal that produces the ideal
sound effect of part-pedaling can vary from one piano to an-
other and may even vary on the same piano under different
conditions.

In summary, with the help of the pedals, pianists can add
variations to the tones. Pedal onset and offset times may
be annotated in music scores. However, no compositional
markings exist to indicate the variety of part-pedaling tech-
niques mentioned above [6]. Moreover, the role of pedaling
as an instrumental gesture to convey different timbre nu-
ances has not been adequately and quantitatively explored,
despite the existence of some studies on the acoustic effect
of the sustain pedal on isolated notes described in [7] and
[8].

2.2 Related Works
There has been a significant amount of research on in-

strumental gestures in piano performance. The strongest
focus so far has been placed on hand gestures, starting from
an early study by Ortmann [9] who first approached the
“mystery of touch and tone” on the piano through physi-
cal investigation, to an extensive review of the studies on
piano touch in [10]. Meanwhile, arm gestures have been
used in piano pedagogy application through sensing the
arm movement and generating feedback to increase piano
students’ awareness of their gestures in [11]. However, no
formal study on piano pedaling gestures can be found in
the literature.

In terms of data acquisition, several measurement sys-
tems have been developed to be in place for multi-modal
recordings, in order to capture comprehensive performance

parameters. The Yamaha Disklavier and Bösendorfer
CEUS pianos have the ability to record continuous pedal po-
sition for example, which was used by Bernays and Traube
[12] as one of the performance features to investigate timbre
nuances. However, these instruments are rather expensive
and not easily moved, which remain a barrier to wider
adaptation. To overcome these problems, the Moog Piano-
Bar [13] was developed as a convenient and practical option
for adding MIDI recording capability to any acoustic piano.
Its pedal sensing capability however is limited to discrete
positions that only provides on/off information. McPher-
son and Kim [14] modified the PianoBar in order to pro-
vide a continuous stream of position information, but thus
far few detailed studies have made use of the pedal data.
These problems have motivated us to develop a dedicated,
portable, and non-intrusive system to measure continuous
pedaling gestures for our further analysis. Our goal is to en-
able better understanding of the use of pedals in expressive
piano performance, as well as to aid detailed capture and
transcription of piano performances.

In the field of analysis of expressive gestural features in
music performance, the use of machine learning has become
a common approach. This is primarily because of the flexi-
bility of statistical models to deal with inexact observations
and their ability to adapt to individual differences between
players or interpretations, owing to their probabilistic rep-
resentations of underlying signal data, or the ability to learn
and exploit dependencies between the techniques employed
[15]. For instance, Van Zandt-Escobar et al. [16] developed
PiaF to extract variations in pianists’ performances based
on a set of given gesture references. The estimated varia-
tions are used subsequently to manipulate audio effects and
synthesis processes. Yet, the inclusion of pedaling tech-
niques was not considered as part of gesture sensing in this
or other related studies, let alone the provision of intuitive
feedback to users.

The approach taken in this paper follows the aforemen-
tioned ideas but with a focus on the measurement and recog-
nition of piano pedaling techniques. Our measurement sys-
tem enables synchronously recording the pedaling gestures
and the piano sound at a high sampling rate and resolution,
with the ability to be deployed on common acoustic pianos.
Using the sensor data collected from the system, we first
detect onset and offset times of pedaling gestures on the
sustain pedal using signal processing techniques. Relying
on different assumptions discussed in Sec. 5, two machine
learning methods (SVM and HMM) are proposed for clas-
sifying the segment between every pedal onset and offset.
We focus on four known pedaling techniques: quarter, half,
three-quarters, and full pedal. Good recognition results are
obtained with the SVM-based method, which outperforms
HMM in our case (see Sec. 5.3).

The developed algorithms are finally demonstrated in
an audio-based score following system, extended with cus-
tomized markings we devised to notate pedal use. These
markings are visualized in the context of the music score
in our application, which may be useful in musicology,
performance studies or piano pedagogy. The possible use
of the dataset created using our data acquisition system
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Fig. 1. Schematic overview of the measurement system.

in the context of audio-based pedaling recognition is also
discussed.

3 MEASUREMENT SYSTEM

This section describes a novel measurement system
based on our previous work [17] to capture pedaling ges-
tures on the sustain pedal. Fig. 1 illustrates the schematic
overview of our system, consisting of a sensor and circuit
system to collect pedal depth data, as well as an audio
recorder and a portable single-board computer to capture
both data sources simultaneously.

Near-field optical reflectance sensing was used to mea-
sure the continuous pedal position with the help of a reflec-
tive photomicrosensor (Omron EESY1200). This includes
an LED and a phototransistor in a compact package. The
sensor was mounted in the pedal bearing block, pointing
down towards the sustain pedal. This configuration avoids
interference with pianists. One of the major considerations
in selecting this optical sensor is that its response curve is
monotonic within the optimal sensing distance (0.7 mm to
5 mm). As the sustain pedal is pressed that the pedal-sensor
distance is increased, the pedal reflects less of the optical
beam projected by the sensor emitter, thus decreasing the
amount of optical energy reaching the detector. However,
when the sustain pedal is too close to the sensor, the current
will drop off. We ensured that the measurement made use of
the linear region of the sensor and remained in the optimal
sensing range through a calibration procedure. Then the
output voltage of the sensor was amplified and scaled to a
suitable range through a custom-built Printed Circuit Board
that employed a modified version of the circuit described in
[18]. Another consideration is the reflectivity of the object
being measured. A removable white sticker was affixed on
the top of the sustain pedal in order to reflect enough light
for the measurement to be robust. With this configuration,

the output voltage of the circuit is proportional to the in-
coming light and roughly follows the inverse square of the
pedal-sensor distance.

The output of the circuit was then recorded at 22.05 kHz
sampling rate using the analogue input of Bela1, which
is an open-source embedded system based on the Bea-
gleBone Black single-board computer [19]. We opted for
using this system because of the need to synchronously
capture audio and sensor data using a high sampling rate
and resolution. The Bela platform provides stereo audio
input and output, plus several I/O channels with 16-bit
analogue-to-digital converters (ADC) and 16-bit digital-
to-analogue converters (DAC) for attaching sensors and/or
actuators. It combines the resources and advantages of em-
bedded Linux systems with the performance and timing
guarantees typically available only in dedicated digital sig-
nal processing chips and microcontrollers. Consequently,
Bela integrates audio processing and sensor connectivity
in a single high-performance package for our use. These
are the main reasons for choosing Bela, rather than other
hybrid microcontroller-plus-computer systems, which typ-
ically impose limited sensor bandwidth and may introduce
jitter between sensor and audio samples. Therefore, using
our system shown in Fig. 1, the piano sound can be simul-
taneously recorded at 44.1 kHz on the recorder in a high
quality and then fed through to the audio input of Bela.
Finally both the sensor and audio data were captured with
the same master clock and logged into the internal memory
of Bela.

4 DATABASE CONSTRUCTION

The measurement system described in Sec. 3 was de-
ployed on the sustain pedal of a Yamaha baby grand piano
situated in the MAT studios at Queen Mary University of
London. Ten well known excerpts of Chopin’s piano mu-
sic were selected to form our dataset. These pieces were
chosen because of the expressive nature of Chopin’s com-
positions, as well as because Chopin was among the first
composers to consistently call for the use of pedals in piano
pieces. A pianist was asked to perform the excerpts using
music scores provided by the experimenter. Pedal onset and
offset times were marked in several versions of Chopin’s
published scores. We adopted the version that most pub-
lishers accept. In these scores the pedal markings always
coincide with the phrase markings. When the sustain pedal
is pressed, the suggested pedal depth was also notated by
the experimenter. This was roughly in accordance with the
dynamics changes and metric accents, since more notes
will remain sounding when the key is released in case the
sustain pedal is pressed at a deeper level.

Since different techniques may not be used in equal pro-
portion in real world performances, there was no intended
coverage of the four different levels of pedal depth. Conse-
quently the number of instances of each pedaling technique
in the music excerpts we recorded remains unbalanced as
can be observed in Table 1.

1 http://bela.io
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Table 1. Number of pedaling instances in the music excerpts
from our database.

Music Excerpts 1/4 1/2 3/4 Full Pedal

Op.10 No.3 14 13 7 5
Op.23 No.1 7 17 8 29
Op.28 No.4 17 24 5 24
Op.28 No.6 9 27 5 17
Op.28 No.7 2 10 3 1
Op.28 No.15 7 34 4 22
Op.28 No.20 9 12 11 17
Op.66 6 21 10 11
Op.69 No.2 2 15 10 24
B.49 3 51 8 17
Sums 76 224 71 167

Fig. 2. Scatter plot of the value of Gaussian parameters calculated
from pedaling instances.

The gesture data were labelled frame by frame according
to the notated scores to obtain a basic ground truth dataset.
In order to evaluate to what extent the pianist followed the
instructions provided in the scores, we computed descrip-
tive statistics, visualized the data, and examined how well
it matched the notation.

We first merged the frames that were consecutively la-
beled with the same pedaling technique into one segment.
For the purpose of representing pedaling techniques we
opted for using statistical aggregates of the sensor data
in each segment. It was observed that the data in each
segment fitted the normal distribution. Therefore Gaussian
parameters were extracted to characterize the pedaling tech-
nique used within each segment. Fig. 2 presents the value of
the parameters for each pedaling instance. We can observe
fairly well defined clusters within the data with respect to
pedal markings and also observe that the clusters are ap-
proximately linearly separable with the exception of half
and quarter pedal. We also examined the consistency of
pedal use with the markings and confirmed that the in-

Fig. 3. Onset and offset detection.

terpretation of the pianist was largely consistent with the
pedaling notations provided by the experimenter.

5 PEDALING RECOGNITION

Given the dataset discussed in the previous section, our
task is to recognize when and which pedaling technique
were employed using the gesture data. “When” refers to
the pedal onset and offset times, which can be detected
using signal processing algorithms. “Which” refers to the
level or class of pedal depth. We aim to classify this into
quarter, half, three-quarters or full pedal technique. As we
mentioned in Sec. 2, pianists vary their use of pedaling
techniques with the music piece and/or the characteristics
of the performance venue. This requires automatic adapta-
tion to how a technique is used in a particular venue or by a
particular musician. Manually setting the thresholds to clas-
sify the level of part-pedaling is therefore inefficient. We
decided to use supervised learning methods to train SVM
or HMM classifiers in a data-driven manner. To this end,
we employed the scikit-learn [20] and hmmlearn2 libraries
to construct our SVM and HMM separately. In Sec. 5.2
we introduce SVM and HMM and discuss the rationale for
choosing them as classifiers.

5.1 Onset and Offset Detection
Fig. 3 presents the process of segmenting the pedal data

using onset and offset detection. The value of raw gesture
data represents the position changes of the sustain pedal.
The smaller the value the deeper the pedal was pressed.
The Savitzky-Golay filter was used to smooth the raw data.
It is a particular type of low-pass filter well-adapted for

2 http://hmmlearn.readthedocs.org
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Fig. 4. Classification process.

smoothing noisy time series data [21]. The Savitzky-Golay
filter has the advantages of preserving the features of the
distribution such as maxima and minima, which are often
flattened by other smoothing techniques such as moving
average or simple low-pass filtering. Thus it is often used
to process time series data collected from sensors such as
electrocardiogram processing [22]. Furthermore, filtering
could avoid spurious peaks in the signal, which would lead
to the false detection of pedaling onsets or offsets. Using the
filtered data, pedaling onset and offset times were detected
by comparing the data with a threshold (horizontal dashed
line). This threshold is selected by choosing the minimum
value from a peak detection algorithm, i.e., the smallest
peak (represented by the triangle). The moment when the
value of data crosses the threshold with a negative slope is
considered as the onset time, while positive slope indicates
the offset time. In this manner, each segment was defined
by data between the onset time and its corresponding offset
time. For example, there are 16 segments detected in Fig. 3.

5.2 Classification
Fig. 4 illustrates the overall classification procedure. Af-

ter we defined the segments by the gesture data between the
detected onset and offset times, Gaussian parameters were
extracted from every segment to aid classification. This was
motivated by the observation that the data in each segment
largely fits the normal distribution as we discussed in Sec. 4.
Using statistical aggregates as features can not only reduce
the dataset size and improve computational efficiency, but
also enable to focus on higher level information that rep-
resents each instance of pedal use. The statistical features
used as input to the classifier were computed based on the
Gaussian assumption and parametrised by Eq. (1), where μ

is mean of the distribution and σ is standard deviation.

P(x) = 1

σ
√

2π
e−(x−μ)2/2σ2

(1)

We exploited SVM and HMM separately using the ex-
tracted features to classify the detected pedaling segments.
A subset of our dataset was then used to train the classi-
fiers in order to output the labels of pedaling techniques.
Label number 1 to 4 correspond to the quarter, half, three-
quarters, and full pedaling technique. Despite pedal position
is measured in a continuous space, classification of pedal-
ing as discrete events coincides with the interpretation by
pianists and may benefit applications such as transcription
and visualization, where discrete symbols corresponding to
a recognized or intended technique are easier to read than
a continuous pedal depth curve. The recognition results re-
mained synchronized with the audio data. These were then
used as the inputs of our visualization application discussed
in Sec. 6.

The SVM algorithm was chosen because it was origi-
nally devised for classification problems that involve find-
ing the maximum margin hyperplane that separates two
classes of data [23]. If the data in the feature space are not
linearly separable, they can be projected into a higher di-
mensional space and converted into a separable problem.
For our SVM-based classification, we compared SVMs
with different kernels and parameters in order to select
one with the best discriminative capacity to categorize the
extracted aggregate statistical features into pedaling tech-
niques. SVM essentially learns an optimal threshold for
classification from the features in training data, avoiding
the use of heuristic threshold and may also account for
possible non-linearities in the data.

The second method we employed was HMM-based clas-
sification. HMM is a statistical model that can be used to
describe the evolution of observable events that depend on
hidden variables that are not directly observable [24]. In our
framework the observations are the features from gesture
data and the hidden states are the four pedaling techniques
to be classified. In our dataset, which consists of Chopin’s
music, the levels of pedal depth among the segments were
changed constantly. We assumed that learning the transition
probability of the hidden states could reveal musicological
meanings in terms of the extensive use of part-pedaling
techniques for an expressive performance. The structure of
our HMM was designed as a fully connected model with
four states, where states may exhibit self transition or tran-
sition into any of the three other states. Gaussian emissions
were used to train the probabilistic parameters. Our HMM-
based classification was done by finding the optimal state
sequence associated with the given observation sequence.
The hidden state sequence that was most probable to have
produced a given observation sequence can be computed
using Viterbi decoding.

5.3 Results
Our ground truth dataset discussed in Sec. 4 contains

labels for the pedal depth denoting the pedaling tech-
nique employed within each segment where the pedal is
used. The performance of the classifiers were compared
using this dataset by conducting leave-one-group-out cross-
validation. This method is different from leave-one-out
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Table 2. F-measure score of SVM and HMM.

Music Excerpts HMM F-score SVM F-score

Op.10 No.3 0.744 0.969
Op.23 No.1 0.902 0.924
Op.28 No.4 0.914 0.976
Op.28 No.6 0.759 0.959
Op.28 No.7 0.688 0.893
Op.28 No.15 0.627 0.943
Op.28 No.20 0.816 0.906
Op.66 0.938 0.970
Op.69 No.2 0.804 0.881
B.49 0.823 0.879
Mean 0.801 0.930

Fig. 5. Performance of SVM classifiers with different kernels
(RBF and linear) and parameters (γ and C).

cross-validation, which is more commonly applied in the
field of music information retrieval. In the leave-one-group-
out scheme, samples were grouped in terms of music ex-
cerpts. Classifiers were validated in each music excerpt
where the data need to be classified, while the rest of the
excerpts constitute the training set. Fig. 5 presents the av-
erage F-measure scores for SVM classifiers with different
kernels and parameters. The highest score was achieved by
a linear-kernel SVM with the penalty parameter C = 1000.
This largely confirms that the pedaling data for most pieces
is linearly separable in the feature space we employed.
We adopted this SVM model and compared it with HMM.
Table 2 shows the F-measure scores of the evaluation.
We can observe that SVM outperformed HMM in ev-
ery music excerpt, while a mean F-measure score of
0.801 and 0.930 was obtained for the HMM and SVM
respectively.

We hypothesize that the lower score of the HMM is
resulting from the fact that it was trained in a non-
discriminative manner. The HMM parameters were esti-
mated by applying the maximum likelihood approach using
the samples from the training set and disregarding the rival
classes. Furthermore, a causality of one pedaling technique
being followed by a certain other one may be unnecessary
or adds very little value when the individual pedal events
are separated from each other by long offset phases. For
this reason the learning criterion was not related to factors
that may yield an improvement of the recognition accuracy
directly. While this does not allow us to dismiss poten-
tial dependencies between pedaling techniques, our simple

Table 3. Average F-measure scores of different machine
learning techniques.

KNN GNB DT RF SVM

LTGO 0.916 0.910 0.905 0.910 0.925
SSS 0.941 0.926 0.930 0.944 0.945

Fig. 6. Normalized confusion matrix.

HMM model was not able to capture and exploit such de-
pendencies. The reported results can possibly be improved
using the hidden Markov SVM proposed in [25] as a dis-
criminative learning technique for labeling sequences based
on the combination of the two learning algorithms. Alterna-
tive or richer parametrization of the data instead of Gaussian
parameters may also benefit the classification.

To take a detailed look at the SVM-based classification,
we present a confusion matrix showing the cross-validation
results with the highest average F-measure score in
Fig. 6. It can be observed that the ambiguities between
adjacent pedaling techniques can lead to misclassifica-
tion. In most cases however, pedaling techniques can
be discriminated from one another well. To avoid a po-
tential over-fitting problem that the leave-one-group-out
scheme may cause, we checked the results with two other
cross-validation strategies, namely, leave-three-group-out
(LTGO) and 10-iteration stratified shuffle split (SSS). For
this, the test size was set to 0.3. The SVM model shows
a mean F-measure score of 0.925 and 0.945 for these
two strategies separately. The scores were also higher
than the results using a range of common machine learn-
ing techniques we tested, including K-Nearest Neighbours
(KNN), Gaussian naive Bayes (GNB), decision tree (DT),
and random forest (RF). The average F-measure scores of
these techniques obtained from the LTGO and SSS cross-
validation are presented in Table 3.

6 USE CASES

6.1 Visualization
In order to demonstrate a practical application of our

study, a piano pedaling visualization application was
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Fig. 7. Screen shot of the visualization system.

developed that can present the recognition results in the
context of the music score. This may be useful, for instance,
in piano pedagogy or practice as well as musicological per-
formance studies. We devised a simple notation system for
pedaling that indicates pedal depth and timing. The appli-
cation employed a score following implementation [26] im-
plemented in Matlab, which aligns the music score with the
audio recording of the same piece. Asynchronies between
the piano melody and the accompaniment were handled by
a multi-dimensional variant of the dynamic time warping
(DTW) algorithm in order to obtain better alignments. We
extended this implementation to align the pedaling recog-
nition results of the same piece, given the detected onset
and offset times and the classified pedaling technique. A
screen shot of this system is shown in Fig. 7. The graph-
ical user interface (GUI) allows the user to select a mu-
sic score first. After importing the audio recording and the
corresponding pedaling recognition results, they can be dis-
played by clicking the Play/Pause button. The GUI used the
following markups for display purposes: circles show what
notes in the score are sounding aligned with the audio; stars
indicate pedal onsets while squares indicate pedal offset.
Four different levels of color saturation plus the vertical
location of the star delineate the four pedaling techniques.
The levels are increased with the recognized pedal depth
class.

The recognition and score alignment are completed of-
fline so that our visualization application allows the player
to review the pedaling techniques used in a recording. This
could be used in music education, for instance, guiding
students how to use the pedals in practice after class. We

obtained only informal feedback on the application so far. It
was suggested that the visualization should be implemented
as a real-time application to enable its use during live piano
performance. This could also be used to trigger other visual
effects in the performance, as pedaling is partly related to
music phrasing. Because of the relatively high latency of
the Matlab GUI, it was also recommended to implement
our application using another platform.

6.2 Ground Truth Dataset for Audio-Based
Pedaling Detection

Detection of pedaling techniques from audio recordings
is necessary in the cases where installing sensors on the
piano is not practical. Our measurement system is portable
and easy to set up on any piano, therefore the techniques
introduced in this study can be used to capture ground truth
datasets for the development of pedaling recognition al-
gorithms from audio alone. Thereafter, recognition can be
done by learning a statistical model with the multi-modal
data we collected from piano performances. No sensors
should be required once the detection system is trained, i.e.,
onset and offset times plus pedal depth may be expected to
be returned from audio only. This could help to analyze
existing as well as historical recordings. We have exploited
useful acoustic features and implemented the detection us-
ing isolated notes as a starting point in [27]. Our present
work is dealing with pedaling detection in the context of
polyphonic music. The measurement system presented here
can also provide ground truth data for this work.
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7 CONCLUSION

We presented a method for recognizing piano pedaling
techniques on the sustain pedal using gesture data mea-
sured by a dedicated sensor system. The temporal loca-
tions of pedaling events were identified using onset and
offset detection through signal processing methods. The
employed pedaling technique was then recognized using
supervised machine learning based classification. SVM-
and HMM-based classifiers were trained and compared to
assess how well we can separate the data into quarter, half,
three-quarters or full pedal techniques. In our evaluation,
SVM outperformed the HMM-based method and achieved
an average F-measure score of 0.930. A practical use case
was exemplified by our visualization application, where
the recognition results are presented together with the cor-
responding piano recording in a score following system. A
dataset was also created that can provide ground truth for
related research. Our future work includes the development
of audio-based pedaling detection algorithms. Techniques
in this study can contribute to providing the ground truth
dataset to test recognition algorithms designed to work from
the audio alone. Evaluation of the visualization system has
not yet been conducted with users. This also constitutes
future work.
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