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Consumer cultures are increasingly shifting to cultures of participation supported by technol-
ogy such as social computing. In the domain of interactive audio, listeners’ roles are revisited
giving more importance to desire, context, and the sense of control. We present new devel-
opments in our mood-driven music player Moodplay allowing both social (virtual jukebox)
and personal usage. Moodplay relies on semantic computing technologies for musical mood
using social tags and informative and aesthetic browsing visualizations. The prototype runs
with a dataset of over 10,000 songs covering various genres and arousal and valence levels.
Changes in the design of the system were made in response to a user evaluation including over
120 participants from 15 different sectors of work or education. The proposed client/server
architecture integrates modular components powered by semantic web technologies and audio
content feature extraction. This enables a shift from interactivity to adaptivity where recorded
music content can be controlled in flexible and non linear ways.

1 INTRODUCTION

This work is concerned with the development of novel
listening experiences of recorded music and is part of our
larger project Fusing Audio and Semantic Technologies for
Intelligent Music Production and Consumption1. The music
recording industry created the concept of fixation—to place
a song into a tangible medium such as the Compact Disc
[34]. Although this revolutionized accessibility to music, it
positioned recorded music as a finished goods meant to be
consumed passively from the creative perspective, which
consequently settled a clear distinction between producers
and consumers [7]. Rooted in such tradition, the first gener-
ation of digital music broadcast services left little room for
interactions from end-users, i.e., listeners. We are nowadays
experiencing a shift from consumer cultures to cultures of
participation in different domains, from end-user software
development [34] to music entertainment, with the intro-
duction of multimedia systems responding to the desires

This article is part of the Special Issue on Intelligent Audio
Processing, Semantics, and Interaction. See the guest editors’ note
on page 464 of the 2016 July/August issue.

1 http://www.semanticaudio.ac.uk

and needs of the receivers and new interaction paradigms
revisiting the roles and activities of receivers [13, 17, 39].
With regard to music listening such shift manifests itself
by the development of adaptive music systems [8] defined
here as systems enabling to select or alter music content
according to user-related factors. Music recommender sys-
tems [33], which can be seen as a specific case of adaptive
music systems, aim to present listeners with tracks match-
ing their tastes and activities. Several methodologies for
music recommendation have been proposed over time that
may be categorized as follows according to the sources of
information they rely on: (i) collaborative filtering (relies
on inter-user similitude of interests, see, e.g., Last.fm2);
(ii) content-based (relies on inter-tracks similitudes, e.g.,
derived from audio [12]); (iii) user-based (relies on user
personal factors, such as felt mood [15] or perceived mood
[4]); (iv) context-aware (relies on the user situation, such as
activity [11], location [18], motion [24], time [3]); and (v) a
multimodal combination of information (see, e.g., [15, 26,
38]).

In this paper we present advances made to our mood-
driven and semantic web-based music player suited to
both social, Moodplay [4], and personal, myMoodplay

2 http://www.last.fm
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[2], usages. Among factors driving music recommendation,
mood3 has received a growing interest in the past decade
[5]. Music psychology studies highlighted that music can
actively be used for mood regulation [1] which provides a
foundation to explain why music consumers express strong
interest in being able to search and browse music by mood
[20]. The communication of emotional meaning through
music (perceived mood) differs from mood induction (felt
mood), a difference that is often disregarded in music in-
formation retrieval research. A recommender system per-
forming a one-to-one mapping between a user’s felt mood
and the mood conveyed by a song (e.g., play happy tracks
when one feels happy) would discard the mood regulation
function of music (e.g., play party tracks to shift from calm
to excited states). To address this issue, our system confers
users the possibility to choose music based on a desired
mood, which can or not correspond to their felt mood, de-
pending on cases. We follow an iterative user-centered de-
sign approach [22] where the design is driven and refined
by evaluations with users. The survey conducted in [4]
highlighted areas of improvements and new applications
to our system. We focus here on improving aspects such
as personalization, identification, and mixing and present
a new software architecture informed by user needs and
expectations.

2 RELATED WORK

The design of the music player Moodplay (MP) was
inspired by our participatory live music performance sys-
tem Mood Conductor (MC) [13] that allows audiences to
conduct performers using mood directions. In both MC
and MP, the user-facing mood voting interface (see Fig. 1)
combines categorical and dimensional models of emotions
by using a continuous two-dimensional space inspired by
Russell’s circumplex model of affect [27] (proved relevant
for music by Thayer [36]) together with discrete emotion
categories represented by mood tags (such as angry, haunt-
ing, sweet, and fun). The two dimensions are arousal (A)
or energy (how exciting/calming musical pieces are) and
valence (V) or stress (how positive/negative musical pieces
are). A color gradient is also used in the voting space ac-
cording to color-emotion associations obtained from the
http://wefeelfine.org platform. We aimed to provide users
with a self-explicit interface helping them to find desired
moods easily which proved successful [21]. The first Mood-
play prototype [4] can be seen as a virtual jukebox and tar-
gets social music listening experiences where people col-
laboratively vote for the music to be played (see Fig. 2).
Visualizations and lighting effects provide informative and
aesthetic feedback about individual mood votes and the
mood selected by the system according to time and vote fre-
quency considerations [13]. Time-varying individual mood

3 We will employ the words emotion and mood interchangeably
as their distinctions are out of the scope of this article. We refer the
reader to [23] for a discussion on the differences between emotion
(“temporary and evanescent”) and mood (“relatively permanent
and stable”).

Fig. 1. Example of user-defined mood trajectory in the myMood-
play player. Vertical and horizontal dimensions are arousal and
valence, respectively.

Fig. 2. Example of use of the Moodplay prototype in a social
context (Digital Shoreditch 2015).

vote representations are likewise a dynamic bubble chart
where areas reflect vote frequency, while a moving trace
similar to Dixon’s performance worm [10] is used to ex-
press current and past “elected” moods in the AV space.
MC and MP are the first systems of their kind to the best
of our knowledge.

The social jukebox presented in [25] presents similar-
ities to Moodplay in terms of control (voting through a
smartphone-friendly app) but music is selected in a more
traditional way based on bibliographic (artist, tiltle, etc.)
rather than creative (mood) metadata. Following user eval-
uation (Sec. 4), we developed another prototype, myMood-
play (mMP), destined to be used on a personal level in
a web browser environment [2]. As described in Sec. 3,
MP and mMP rely on data-driven semantic mood space
inferred from crowd sourced tag-to-song associations and
onto which songs from a music collection are projected
[28]. A similar approach is followed in Mood Cloud 2.0
[19] but the technique to obtain the semantic mood space is
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Fig. 3. Moodplay uses structured data built on the Music Ontology, Audio Feature Ontology, and the MUTO tag ontology.

different; Moodplay uses dimensionality reduction tech-
niques together with the affective circumplex transform
(ACT) [28] to conform the semantic mood space to the AV
space, while Mood Cloud 2.0 uses self-organizing maps
(SOMs). [37] proposed an audio content-based approach
combined with two-dimensional visualizations of proba-
bilistic mappings of features such as mood and genre.
Although probabilistic mappings offer a promising way
to counteract uncertainties of audio-based predictions, the
generated browsing space required a learning curve for
users as its dimensions are not explicit. [15] introduced
a hybrid content- and context-based recommender system
that supports reasoning about users’ desired emotion using
a domain-specific semantic web ontology. Users’ desired
emotions are inferred from context and user factors such
as situation and taste, however user-based training of an
emotion state transition model must be conducted for the
system to operate. Some commercial proprietary services4

present similarities to our system but their methods are not
disclosed. Music visualization interfaces relying on features
other than mood have also been proposed. For instance, [40]
applies support vector regression to map high dimensional
audio feature vectors to a two-dimensional tempo/timbre
space.

3 SEMANTIC COMPUTING OF MUSICAL MOOD

Creating mood-based listening experiences requires the
association of audio recordings with perceived moods. Var-

4 http://musicovery.com and http://www.moodagent.com

ious approaches are possible, ranging from using purpose-
fully composed “mood” music also known as production
music [28] and expert annotations of back catalogues, to
automatic identification of mood by machine relying on
acoustic features of recordings (see [6] for a review). While
recent advances in content-based audio analysis allow for
recognizing the mood automatically, audio-based mood de-
tection is challenging and far from being a solved prob-
lem [30]. We therefore developed methods that build mood
models using social information.

The objective for this study was the construction of a
well-balanced music dataset with good coverage of differ-
ent genres and moods. To this end, we relied on the diverse
music catalogue of I Like Music5 (ILM), a library con-
sisting of over 3 million songs at the time of analysis. In
order to obtain mood related tags, we first sampled over 1m
songs from Last.fm using the approach introduced in [29].
From the initial corpus, we found 218,032 tracks in the
ILM database that matched one of the Last.fm tracks using
string matching between artist names, song titles, and track
durations with penalties for spelling mistakes and other
metadata discrepancies. We applied a two stage sampling
method to fulfill several potentially conflicting criteria. We
aimed to create a dataset that represents all broad genre cat-
egories following expert classification available from ILM
as well as crowd sourced genre tags.

We first compute normalized Term Frequency-Inverse
Document Frequency (TF-IDF) scores from the Last.fm

5 http://www.ilikemusic.com
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tags, then create a three-dimensional mood space by using
non-metric Multi-Dimensional Scaling (MDS). To obtain
a good coverage of this mood space, a Gaussian Mixture
Model (GMM) with five components is fitted on the data.
We then estimate the log-likelihood for each track under the
fitted model. This likelihood is then used to sort songs in the
respective genre and artist buckets before sampling. During
iterative sampling, we first choose a genre category using a
pseudo random process that favors genres with fewer artists
associated with them. We then randomly pick an artist from
this genre bucket and choose the least likely song from the
selected artist under the GMM model fitted on the MDS
space. The song is then removed from the pool. We also
limit the number of tracks picked from any single artist
or genre. This process maximizes the number of unique
artists in the collection, while ensures a balanced coverage
of genres and moods.

The database, denoted ILM10K in the following, is then
labelled with AV coordinates using the Affective Circum-
plex Transform (ACT) as in [31]. This transform uses MDS
coordinates but also conforms the mood space to a reference
configuration of terms. Such configuration can be extracted
from Russell’s and Scherer’s studies [27, 32]. This is done
via Procrustes transformation [14], which performs a lin-
ear mapping from one space to another while retaining the
relative distances between objects in the original space.

The track metadata together with arousal-valence coor-
dinates for tracks in the ILM10k dataset produced in the
ACT experiments are stored in a triplestore and structured
according to a light-weight OWL ontology. The ontology
uses concepts from the Music Ontology6 for music pro-
duction metadata and links these with tagging data struc-
tures described in the Modular Unified Tagging Ontology
(MUTO)7. Each audio track entity in the triplestore is repre-
sented as a Track class from the Music Ontology and linked
to a set of Last.FM tags by adding tagging properties to this
class.

4 USER-CENTERED DESIGN

Our Mood Conductor and Moodplay systems have
evolved and continue to evolve following a circular cycle
involving prototyping, user evaluation, and inferred user
and technical requirements. The Mood Conductor system
is the result of a participatory design process involving per-
formers with the objective of enabling creative interactions
with audiences. Moodplay inherited from lessons learned
with Mood Conductor [21], however its context of appli-
cation is different as it deals with recorded music content
rather than live performances. In [4] we conducted a user
evaluation of the social Moodplay prototype with over 120
participants from 15 different sectors of work or education
across two public exhibitions held in London in May 2015.
Photos and a short video showing interactions are provided
at: http://bit.ly/mp photos and http://bit.ly/mp video. As in

6 http://musicontology.com
7 http://muto.socialtagging.org/core/v1.html

[25] we found that the process of voting for music collec-
tively created a rich source of interaction between partic-
ipants as exemplified by the creation of different groups
of users sharing the experience together, the generation of
discussions within these groups (e.g., on musical tastes and
music technology), playful competition, and fun. About
two-thirds of the participants found their experience with
the system very satisfying. The most striking result was
the wide range of applications suggested by the partici-
pants (see Fig. 4) including over 100 different contexts of
use (from, e.g., party and home usage to marketing and
therapy), some of which we had not envisioned. Among
the different areas of improvement identified in [4] we fo-
cus in this paper on the following ones: (i) personalization
(e.g., personal usage with own local or cloud-based music
collection, customization through user preference and his-
tory, etc.), (ii) identification (users, tracks), and (iii) mixing
(e.g., smoother and slower transitions, feature-based mix-
ing). The next section describes the technical changes we
implemented to provide improvements in these three areas.
To be able to support different range of social or personal
applications we opted for a decentralized model enabling a
service-oriented architecture providing increased flexibility
and accessibility. We also built on semantic web technolo-
gies following a linked data approach for content identi-
fication. In order to improve mixing aspects and produce
seamless transitions between tracks as described in [9], we
integrated automated sequencing technologies exploiting
audio content-based features.

5 ARCHITECTURE

The components from the Moodplay system architecture
can be divided into a three-tiered structure by function-
ality: user-facing components, web application logic, and
data storage. The original [4] and proposed architectures
share the underlying data storage components including the
ILM10K audio dataset and a separate triplestore with AV
mood coordinates, tag statistics, and a set of identifiers for
each track. The original software architecture includes user,
audio, visualization, and lighting clients, and the server ap-
plication used to communicate between the individual client
components and process user interaction data (Fig. 5). As an
installation, the original system requires a location-specific
setup, including a PA system, projector, and lighting ef-
fects controller for creating the user experience. The new
architecture (Fig. 6) adds a JSON database storing content-
based audio features to the data storage layer to improve
mixing between tracks (see Sec. 5.2). The application logic
is implemented in several independent modular units that
can be located on one or multiple servers. The Web ser-
vice API receives requests from client-facing components
and information processing agents and connects to the data
stores. The enhanced functionality to audio playback has
introduced two more application logic software compo-
nents, one to process content-based audio feature data and
the other to efficiently stream audio fragments on-demand
according to user interaction.
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Fig. 4. Top 100 suggested applications for Moodplay [4].

5.1 Personalization and Identification
The user interface (UI) design and implementation de-

pends on the particular context for which the architecture
is deployed. In the original system the user client runs a
Web-based application written in JavaScript supported by
any modern Web browser. This design allows Moodplay to
be used in a platform-independent manner and the interface
serves solely as a control device for users to interact. This
is in contrast to the decentralized architecture implemented
for the web client version myMoodplay, in which different
components directly involved in creating the user experi-

ence, are required to be incorporated into a common client
application. In this case the user interface is presented in
the same combined space as the visualization functionality.
This is achieved by layering an interactive surface on top
of animated and background visualizations displaying user
selections and playback indicators, to better support iden-
tification (Fig. 7). In order to improve the customization
of the player, we added the possibility to build playlists
and store them by directly drawing trajectories in the AV
space. The Moodplay social experience is organized around
a visualization projected on a large screen (Fig. 2). In a
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Fig. 5. The architecture of the original Moodplay system.
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Fig. 6. New architecture for the personal browser-based myMoodplay system. Dymo: dynamic music objects [35].

browser environment the principle of visually representing
the mood votes remains the same regardless of whether the
interaction is collaborative or personalized. The myMood-
play app combines user interface with visualization, meta-
data, and playback indicator as shown in Fig. 7.

5.2 Adaptive Audio Playback
The audio playback engine used in the original Mood-

play system, implemented in SuperCollider8, simply per-
forms crossfades between two successive tracks [4]. To
offer advanced audio mixing capabilities we developed a
new engine based on semantic web technologies and audio
features. The engine uses the Dynamic Music Objects (dy-
mos) linked data music format defined by the Mobile Audio
Ontology [35]. The format consists of an abstract represen-
tation of the musical structure and its semantics9 that can
be annotated with any type of audio features. Dymos can
be queried and navigated in various ways and can include
playback instructions that define how various controls and
features map to predefined and custom musical parameters.
The domain of such mappings can cover algorithmic con-
trols, mobile sensor data, user interface controls, contextual
information, web-sourced musical metadata, and analytical
information extracted from the music itself. Dymos can
be loaded and played back in any web environment sim-
ply by embedding the dedicated JavaScript library using the
Bower package management system10. This library ensures
that any necessary sensors or control units are allocated and
it includes an audio scheduler that works for a great variety
of use cases.

The audio client in the original Moodplay system con-
nects to a SPARQL endpoint during system initialization
and retrieves mood coordinate data for all tracks in the

8 http://supercollider.github.io
9 Based on the Common Hierarchical Abstract Representation

for Music (CHARM) [16].
10 http://bower.io/search/?q=dymo-core

dataset. However, this solution is not feasible for the on-
demand data access model implemented in the browser-
based version of the system. Instead, the nearest neighbor
search is performed by sending a query to the SPARQL
endpoint (example shown in Listing 1) that calculates the
Manhattan distance between user selections and track co-
ordinates in the mood space. The query determines a fixed
number of nearest tracks along with their features from
which the server generates dymos. These dymos are sent
back to the playback engine that queries them locally to
find which track will best follow the current track according
to configurable transition rules (e.g., similar key, harmony,
meter, tempo, etc.). On the server, the audio feature data
(extracted using the Vamp plugins framework with Sonic
Annotator11) are structured according to the Audio Feature
Ontology12 and capture acoustic information that relate to
perceptual attributes (e.g., rhythm, tonality, timbre, struc-
tural segmentation), often at a high temporal resolution.
In dymos the features are summarized depending on the
custom needs of the playback engine based on statistical
methods. The use of semantic web technologies for both
the audio feature store and the dymos ensures that musi-
cal concepts and their relationships are properly defined
throughout the process. At all times the playback engine is
aware of the musical objects it deals with and it can rely
on advanced querying methods of the semantic web to find
optimal transition candidates and locations.

Transitions between successive tracks can be achieved
by interpolating in various musical dimensions. For the my-
Moodplay system we define a mainmix dymo as a conjunc-
tion of two tracks that can be played back simultaneously
(Listing 2). The dymo tracks are modeled as three-level hi-
erarchical structures consisting of the main audio track, a
bar-level, and a beat-level. To create the transitions, we add
custom higher-level parameters and define how they map to

11 http://vamp-plugins.org/sonic-annotator
12 https://w3id.org/afo/onto/1.1#
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Fig. 7. myMoodplay browser-based UI with mood space visualization.

PREFIX mo: <http://purl.org/ontology/mo/>
PREFIX mood: <http://isophonics.net/content/mood/>

SELECT ?valence ?arousal ?mbid ?path
WHERE
{

SELECT ?valence ?arousal ?mbid ?path
((ABS(@x-?valence)+ABS(@y-?arousal)) as ?diff)
WHERE {

?coords mood:valence ?valence ;
mood:arousal ?arousal ;
mood:configuration mood:actfold4 .

?lfmid mood:coordinates ?coords ;
mo:available_as ?fileid ;
mo:musicbrainz_guid ?mbid .

?fileid mood:filename ?path .
} ORDER BY ?diff

} LIMIT 5

Listing 1. SPARQL query to retrieve the nearest 5 track identifiers
to user specified x-y coordinates (query parameters @x and @y
are substituted by floating point values when query is executed).

lower-level ones. For instance, the first mapping in Listing
2 defines the relationship between our custom parameter
Tempo and the standard parameter TimeStretchRa-
tio of all beat-level objects, also considering their indi-
vidual duration feature. This parameter not only adjusts
the overall tempo of the songs but also evens out the du-
ration of the beats in order to ensure that the beats can
be matched during playback. The second mapping defines
how the Fade parameter controls an interpolation between
the tempos of the two tracks (via the Tempo parameter just
defined). In a similar fashion, we then define an interpo-
lation between the tracks’ amplitudes also using low-pass
filters. The interpolation mechanism can be controlled by
mapping a Ramp control with a given duration to the Fade
parameter. Whenever a new track is chosen by the system

{
"@context":"http://tiny.cc/dymo-context",
"@id":"mix",
"@type":"Dymo",
"ct":"conjunction",
"parts":["track1.json","track2.json"],
"mappings":[{

"domainDims":[
{"name":"Tempo","@type":"Parameter"},
{"name":"duration","@type":"Feature"}],

"function":{"args":["a", "b"],
"body":"return a/60*b;"},

"dymos":{"args":["d"],
"body":"return d.getLevel() == 3;"},

"range":"TimeStretchRatio"
},{

"domainDims":[
{"name":"Fade","@type":"Parameter"},
{"name":"afv:Tempo","@type":"Feature"}],

"function":{"args":["a", "b"],
"body":"return b[0]+a*(b[1]-b[0]);"},

"dymos":["mix"],
"range":"Tempo"

},...
]

}

Listing 2. The main mix dymo used in myMoodplay.

we replace the inaudible track of the mix dymo with the
new one and trigger the Ramp.

The new adaptive playback engine also makes use of
a specialized audio server that minimizes network traffic
between components and responds more flexibly to user
interactions. A dedicated service sends audio chunks rather
than entire files upon request, based on the segmentation
structure represented in the currently playing dymos. This
is optimal for Moodplay due to the unpredictability and
potential high frequency of user choices. The audio chunk
server also paves the way for future developments by en-
abling unpredictable behavior of the playback engine such
as nonlinear playback and real-time mashups.

J. Audio Eng. Soc., Vol. 64, No. 9, 2016 September 679



BARTHET ET AL. PAPERS

5.3 Discussion
The modular flexible architecture of Moodplay has en-

abled experimenting with different solutions to user in-
teraction. The two-dimensional interactive control inter-
face can be supplemented or replaced by other means
of mood estimation, including extracting valence and
arousal features from biosignals using, for example, an
electroencephalogram (EEG) to measure brain activity or
electromyogram (EMG) for detecting muscle activity. An
experimental interface for Moodplay using biosignals was
designed at the Sonar Music Hack Day 2015, where brain,
muscle, and heart activity were mapped to valence and
arousal coordinates with the Neuroelectrics Enobio13 and
BITalino14 biosignals systems and sent to the Moodplay
server. Through mapping, the participants’ votes were reg-
istered and the mood trajectory calculated by the existing
mechanism despite the nature of the sources and data in-
put rates being significantly different from what the orig-
inal touch surface interface affords. The new system can
be used in various ways fulfilling different use cases. For
instance, we can build a personalized browser-based ver-
sion (myMoodplay) where a single user selects a mood or
defines a mood trajectory and the music is played back lo-
cally in the client application (Fig. 6). We can also build
a web-based Moodplay that works in the same way as the
original system, with multiple users collaboratively select-
ing moods and a centralized server generating the music
that the clients then stream (in this case, the audio compo-
nent shown as part of the client in Fig. 6 is externalized to
its own server).

6 CONCLUSIONS AND FUTURE WORK

We presented a novel client/server architecture for our
mood-based music player Moodplay, which integrates mod-
ular components powered by semantic web technologies
and audio content feature extraction. The proposed frame-
work supports social (virtual jukebox) as well as personal
applications and enables an adaptive control of music tracks
responding to user-based (e.g., mood trajectory) and/or con-
textual factors (e.g., based on mobile phone sensor data).
We plan to develop dynamic user personalization tech-
niques (e.g., using like/dislike) and explore other types of
browsing interface using multimodal features (e.g., tempo
and mood). With regard to audio playback, we plan to de-
fine different mixing instructions where, for instance, har-
mony or timbre are taken into account for even smoother
transitions. Dynamic music objects could be used to create
mashups on the fly of two or more simultaneous songs to
be able to follow votes for multiple moods. We are also
considering non-linear audio techniques that could trans-
form the player into a creative tool, for instance by reorga-
nizing, compressing or expanding temporally pre-recorded
content.

13 http://www.neuroelectrics.com/products/enobio
14 http://www.bitalino.com
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